OwningYourMathCurriculum: HowtoAdaptfortheChildreninYour Care LeadershipII-GradesK–5-Day2 Curriculum Review Sample Packet Please return to UnboundEd. Page 2 !! ! ! NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& ! Lesson&1&Problem&Set& 3•1& Lesson&1&& Objective:!!Understand!equal&groups!of!as!multiplication.&& ! Suggested&Lesson&Structure& ! ! ! ! Fluency!Practice! Application!Problem! Concept!Development! Student!Debrief! (5!minutes)!! (10!minutes)!! (35!minutes)!! (10!minutes)!! ! Total&Time& (60&minutes)& Concept&Development&&(35&minutes) & Materials:!!(S)!12!counters,!personal!white!board! Problem&1:&&SkipLcount&to&find&the&total&number&of&objects.&& T:! (Select!10!students!to!come!to!the!front.)!!At!the!signal,!say!how!many!arms!you!each!have.!!(Signal.)! S:! 2!arms!! T:! Since!we!each!represent!a!group!of!2!arms,!let’s!skipPcount!our!volunteers!by!twos!to!find!how!many! arms!they!have!all!together.!!To!keep!track!of!our!count,!the!students!will!raise!up!their!arms!when! we!count!them.!!! S:! (Count!2,!4,!6,!…20.)! T:! How!many!raised!arms!do!we!have!in!all?! S:! 20.! T:! Arms!down.!!How!many!twos!did!we!count!to!find!the!total?!!Turn!and!whisper!to!your!partner.!! S:! 10!twos.! T:! What!did!you!count!to!find!the!number!of!twos?! S:! I!counted!the!number!of!volunteers!because!each!person!has!a!group!of!two!arms.!! T:! SkipPcount!to!find!the!total!number!of!arms.!! Sample&teacher&board:& S:! (Say!2,!4,!6,!….)!!! T:! (As!they!count,!write!2!+!2!+!2….)! T:! Look!at!our!addition!sentence.!!Show!thumbs! up!if!you!see!the!correct!number!of!twos.!! S:! (Show!thumbs!up.)!! T:! (Under!the!addition!sentence,!write!10!twos.)!! Clap!3!times!if!you!agree!that!10!groups!of!two! is!20.!! S:! (Clap!3!times.)! T:! (Write!10&groups&of&two&is&20!under!the!other!number!sentences.)! Page 3 !! ! ! NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& ! Lesson&1&Problem&Set& 3•1& Problem&2:&&Understand&the&relationship&between&repeated&addition,&counting&groups&in&unit&form,&and& multiplication&sentences.&&& Seat!students!at!tables!with!personal!white!boards!and!12!counters!each.! T:! You!have!12!counters.!!Use!your!counters!to!make!equal&groups&of!two.!!How!many!counters!will! you!put!in!each!group?!!Show!with!your!fingers.! S:! (Hold!up!2!fingers!and!make!groups!of!two.)! T:! How!many!equal!groups!of!two!did!you!make?!!Tell!at!the!signal.!!(Signal.)! S:! 6!groups.! T:! 6!equal!groups!of!how!many!counters?!! S:! 6!equal!groups!of!2!counters.! T:! 6!equal!groups!of!2!counters!equal!how!many!counters!all!together?! S:! 12!counters.! T:! Write!an!addition!sentence!to!show!your!groups!on!your!personal!white!board.!! S:! (Write!2!+!2!+!2!+!2!+!2!+!2!=!12.)! Sample&teacher&board:& T:! (Record!the!addition!sentence!on!the!board.)!!In!unit! form,!how!many!twos!did!we!add!to!make!12?! S:! 6!twos.! T:! (Record!6!twos!=!12!under!the!addition!sentence.)!!! 6!×!2!is!another!way!to!write!2!+!2!+!2!+!2!+!2!+!2!or!6! twos.!!(Record!6!×!2!=!12!under!6!twos!=!12!on!the! board.)!!These!number!sentences!are!all!saying!the! same!thing.!!! T:! Turn!and!talk!to!your!partner.!!How!do!you!think! 6!×!2!=!12!relates!to!the!other!number!sentences?! S:! They!all!have!twos!in!them,!and!the!answer!is!12.!!#!!! I!think!the!6!shows!how!many!twos!there!are.!#!You! have!to!count!two!6!times!because!there!are!6!groups! of!them.!!That’s!how!you!get!6!times!2.!!#!!6!×!2!might! be!an!easier!way!to!write!a!long!addition!sentence.! & It!may!be!necessary!to!explicitly!connect! times!and!the!symbol!×.!!Have!students! analyze!the!model.!!“How!many!times!do! you!see!a!group!of!two?”!!Have!them!count! the!groups,!write the number sentence, and say the words together. ! & NOTES&ON&MULTIPLE MEANS OF ACTION AN E P ESSION T:! Ways!that!are!easier!and!faster!are!efficient.!!When!we! have!equal!groups,!multiplication!is!a!more!efficient! way!to!find!the!total!than!repeated!addition.! Repeat!the!process!with!4!threes,!3!fours,!and!2!sixes!to!get! students!comfortable!with!the!relationship!between!repeated! addition,!counting!groups!in!unit!form,!and!multiplication! sentences.! NOTES&ON&MULTIPLE&MEANS OF&REPRESENTATION:& " 6!groups!of!two!equal!12.! § 6!times!2!equals!12.! Some!students!may!need!more! scaffolding!to!realize!that!multiplication! cannot!be!used!to!find!totals!with! groups!that!are!not!equal.!!Use!the! following!questions!to!scaffold.!! ! Problem&3:&&Write&multiplication&sentences&from&equal&groups.& Draw!or!project!the!picture!to!the!right.! T:! These!are!equal!groups.!!Turn!and!tell!your!partner! why!they!are!equal.! S:! There!are!the!same!number!of!grey!circles!in!each! group.!!#!All!of!the!grey!circles!are!the!same!size!and! " Does!the!drawing!show!3!fours?!! " Does!3!times!4!represent!this! drawing?! " How!might!we!redraw!the!picture! to!make!it!show!3!×!4?! ! Page 4 !! ! ! NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& ! Lesson&1&Problem&Set& 3•1& shape,!and!there!are!4!in!each!group.! T:! Work!with!your!partner!to!write!a!repeated!addition! and!a!multiplication!sentence!for!this!picture.! S:! (Write!4!+!4!=!8!and!either!2!×!4!=!8!or!4!×!2!=!8.)! T:! (Project!or!draw!the!following!image.)!!Look!at!my!new! drawing!and!the!multiplication!sentence!I!wrote!to! represent!it.!!Check!my!work!by!writing!an!addition! sentence!and!counting!to!find!the!total!number!of! objects.!!! ! ! 3&×&4&=&12& MP.3& ! ! S:! (Write!4!+!4!+!3!=!11.)! T:! Use!your!addition!sentence!as!you!talk!to!your!partner!about!why!you!agree!or!disagree!with!my! work.! S:! I!disagree!because!my!addition!sentence!equals!11,!not!12.!!#!!It’s!because!that!last!group!doesn’t! have!4!circles.!!#!!You!can!do!multiplication!when!the!groups!are!equal.!!#!!Here,!the!groups!aren’t! equal,!so!the!drawing!doesn’t!show!3!×!4.! T:! I!hear!most!students!disagreeing!because!my!groups!are!not!equal.!!True,!to!multiply!you!must!have! equal!groups.!!& Problem&Set&&(10&minutes)&& Students!should!do!their!personal!best!to!complete!the! Problem!Set!within!the!allotted!10!minutes.!!Some!problems! do!not!specify!a!method!for!solving.!!This!is!an!intentional! reduction!of!scaffolding!that!invokes!MP.5,!Use!Appropriate! Tools!Strategically.!!Students!should!solve!these!problems! using!the!RDW!approach!used!for!Application!Problems.!! For!some!classes,!it!may!be!appropriate!to!modify!the! assignment!by!specifying!which!problems!students!should! work!on!first.!!With!this!option,!let!the!careful!sequencing!of! the!Problem!Set!guide!your!selections!so!that!problems! continue!to!be!scaffolded.!!Balance!word!problems!with! other!problem!types!to!ensure!a!range!of!practice.!!Assign! incomplete!problems!for!homework!or!at!another!time! during!the!day.! ! ! ! ! ! ! ! ! ! Page 5 ! ! Lesson&1& 4 3& NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& Lesson&1! Objective:!!Investigate!and!use!the!formulas!for!area!and!perimeter!of! rectangles.! ! Suggested&Lesson&Structure& ! ! ! Fluency!Practice! Concept!Development! Student!Debrief! (15!minutes)! (35!minutes)! (10!minutes)! ! Total&Time& (60&minutes)& Concept&Development&&(35&minutes) & Materials:! (T)!Grid!paper!(with!ability!to!project!or!enlarge!grid!paper),!chart!paper!!(S)!Grid!paper,!personal! white!board! Problem&1:&&Review&and&compare&perimeter&and&area&of&a&rectangle.& T:! Draw!a!rectangle!on!your!grid!paper!that!is!four!units!wide! and!seven!units!long.!!! S:! (Draw!rectangle!on!grid!paper.)!!! T:! (Monitor!to!see!that!the!students!have!drawn!the!rectangle! correctly.)!!Tell!your!partner!what!you!notice!about!your! rectangle.! S:! The!opposite!sides!are!the!same!length.!!"!It!has!four!right! angles.!!"!The!area!of!the!rectangle!is!28!square!units.!!! "!The!perimeter!of!the!rectangle!is!22!units.! T:! Place!the!point!of!your!pencil!on!one!of!the!corners!of!the! rectangle.!!Now,!trace!around!the!outside!of!the!rectangle! until!you!get!back!to!where!you!started.!!What!do!we!call!the!measurement!of!the!distance!around!a! rectangle?! S:! The!perimeter.! T:! Trace!the!perimeter!again.!!This!time,!count!the!units!as!you!trace!them.!!What!is!the!perimeter!of! the!rectangle?! S:! 22!units.! T:! When!we!know!the!measurements!of!the!length!and!width!of!a!rectangle,!is!there!a!quicker!way!to! determine!the!perimeter!than!to!count!the!units!while!tracing?! S:! We!could!add!the!measurements!of!all!four!sides!of!the!rectangle.! T:! Take!your!pencil!and!count!all!of!the!squares!within!your!rectangle.!!These!squares!represent!the! ! Lesson&1:& Date:& Investigate!and!use!the!formulas!for!area!and!perimeter!of!rectangles.! 1/7/17! 3.A.3& Page 6 ©!2014!Common!Core,!Inc.!Some!rights!reserved.!commoncore.org! ! This!work!is!licensed!under!a!! Creative!Commons!AttributionENonCommercialEShareAlike!3.0!Unported!License.!! ! ! Lesson&1& 4 3& NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& area!of!the!rectangle.!!How!do!I!find!the!area!of!the!rectangle?! S:! You!count!the!squares.!!"!You!can!multiply!the!length!times!the!width!of!the!rectangle.!!"!Four! units!times!7!units!is!28!square!units. ! Lesson&1:& Date:& Investigate!and!use!the!formulas!for!area!and!perimeter!of!rectangles.! 1/7/17! 3.A.4& Page 7 ©!2014!Common!Core,!Inc.!Some!rights!reserved.!commoncore.org! ! This!work!is!licensed!under!a!! Creative!Commons!AttributionENonCommercialEShareAlike!3.0!Unported!License.!! ! ! Lesson&1& 4 3& NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& Problem&2:&&Use&the&formula&2&×&(l&+&w)&to&solve&for&perimeter&and&to&find&an&unknown&side&length&of&a& rectangle.& T:! Draw!a!rectangle!on!your!graph!paper!that!is!3!units!wide!and!9!units! long.!!(Draw!and!display!the!rectangle.)!!Watch!as!I!label!the!length!and! width!of!the!rectangle.!!Now,!label!the!length!and!width!of!your! rectangle.!!How!can!I!find!the!perimeter?! S:! Add!up!the!lengths!of!all!of!the!sides.!!3!+!9!+!3!+!9!=!24.!!The!perimeter!is! 24!units.!!"!You!could!also!add!3!+!3!+!9!+!9.!!The!answer!is!still!24!units.!! The!order!doesn’t!matter!when!you!are!adding.! T:! Use!your!pencil!to!trace!along!one!width!and!one!length.!!Along!how! many!units!did!you!trace?! S:! 12!units.! T:! How!does!12!relate!to!the!length!and!width!of!the!rectangle?! S:! It’s!the!sum!of!the!length!and!width.! T:! How!does!the!sum!of!the!length!and!width!relate!to!finding!the!perimeter!of!the!rectangle?! S:! It’s!halfway!around.!!"!I!can!double!the!length!and!double!the!width!to!find!the!perimeter!instead!of! adding!all!the!sides!(2l"+!2w).!!"!I!could!also!add!the!length!and!the!width!and!double!that!sum,!! 2!×!(l!+!w).!!"!Both!of!those!work!since!the!opposite!sides!are!equal.! T:! You!have!just!mentioned!many!formulas,!like!counting!along!the!sides!of! the!rectangle!or!adding!sides!or!doubling,!to!find!the!perimeter.!!Let’s! create!a!chart!to!keep!track!of!the!formulas!for!finding!the!perimeter!of!a! rectangle.!!Talk!to!your!partner!about!the!most!efficient!way!to!find!the! perimeter.! S:! If!I!draw!the!shape!on!grid!paper,!I!can!just!count!along!the!edge.!!"!I!am! good!at!adding,!so!I!will!add!all!four!sides.!!"!It!is!faster!to!double!the! sum!of!the!length!and!width.!!It’s!only!two!steps.! T:! We!can!write!the!formula!as!P!=!2!×!(l!+!w)!on!our!chart,!meaning!we!add!the!length!and!width!first! and!then!multiply!that!sum!by!2.!!What!is!the!length!plus!width!of!this!rectangle?! S:! 3!plus!9!equals!12.!!12!units.! T:! 12!units!doubled,!or!12!units!times!2,!equals?! S:! 24!units.! T:! Now,!draw!a!rectangle!that!is!2!units!wide!and!4!units!long.!!Find!the!perimeter!by!using!the!formula! I!just!mentioned.!!Then,!solve!for!the!perimeter!using!a!different!formula!to!check!your!work.! S:! 2!+!4!=!6!and!6!×!2!=!12.!!The!perimeter!is!12!units.!!"!Another!way!is!to!double!2,!double!4,!and! then!add!the!doubles!together.!!4!plus!8!is!12!units.!!Both!formulas!give!us!the!same!answer.! Repeat!with!a!rectangle!that!is!5!units!wide!and!6!units!long.! Instruct!students!to!sketch!a!rectangle!with!a!width!of!5!units!and!a!perimeter! of!26!units!on!their!personal!white!boards,!not!using!graph!paper.! T:! Label!the!width!as!5!units.!!Label!the!length!as!an!unknown!of!x!units.!! How!can!we!determine!the!length?!!Discuss!your!ideas!with!a!partner.! ! Lesson&1:& Date:& Investigate!and!use!the!formulas!for!area!and!perimeter!of!rectangles.! 1/7/17! 3.A.5& Page 8 ©!2014!Common!Core,!Inc.!Some!rights!reserved.!commoncore.org! ! This!work!is!licensed!under!a!! Creative!Commons!AttributionENonCommercialEShareAlike!3.0!Unported!License.!! ! ! Lesson&1& 4 3& NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& S:! If!I!know!that!the!width!is!5,!I!can!label!the!opposite!side!as!5!units!since!they!are!the!same.!!If!the! perimeter!is!26,!I!can!take!away!the!widths!to!find!the!sum!of!the!other!two!sides.!!26!–!10!=!16.!!If! the!sum!of!the!remaining!two!sides!is!16,!I!know!that!each!side!must!be!8!since!I!know!that!they!are! equal!and!that!8!+!8!=!16,!so!x!=!8!(shows!sketch!to!demonstrate!her!thinking).! S:! We!could!also!find!the!length!another!way.!!I!know!that!if!I!add!the!length!and!the!width!of!the! rectangle!together!that!I!will!get!half!of!the!perimeter.!!In!this!rectangle,!because!the!perimeter!is!26! units,!the!length!plus!the!width!equals!13!units.!!If!the!width!is!5,!that!means!that!the!length!has!to! be!8!units!because!5!+!8!=!13.!!"!26!÷!2!=!13,!x!+!5!=!13!or!13!–!5!=!x,!so!x!=!8.! Repeat!for!P!=!28!cm,!l!=!8!cm.! Problem&3:&&Use&the&area&formula&(l&×&w)&to&solve&for&area&and&to&solve&for&the&unknown&side&length&of&a& rectangle.& T:! Look!back!at!the!rectangle!with!the!width!of!3!units!and!the!length!of!9!units.!!How!can!we!find!the! area!of!the!rectangle?! S:! We!can!count!all!of!the!squares.!!"!We!could!also!count!the!number!of!squares!in!one!row!and!then! skipEcount!that!number!for!all!of!the!rows.!!"!That’s!just!multiplying!the!number!of!rows!by!the! number!in!each!row.!!"!A!quicker!way!is!to!multiply!the!length!times!the!width.!!Nine!rows!of!3! units!each!is!like!an!array.!!We!can!just!multiply!9!×!3.! T:! Talk!to!your!partner!about!the!most!efficient!way!to!find!the!area!of!a!rectangle.! ! ! ! ! ! ! ! ! Discuss!how!to!find!the!area!for!the!2!×!4!rectangle!and!the!5!×!6!rectangle!drawn!earlier!in!the!lesson.!! Encourage!students!to!multiply!length!times!width!to!solve.!!Ask!students!to!tell!how!the!area!of!each! rectangle!needs!to!be!labeled!and!why.! T:! We!discussed!a!formula!for!finding!the!perimeter!of!a!rectangle.!!We!just!discovered!a!formula!for! finding!the!area!of!a!rectangle.!!If!we!use!A!for!area,!l!for!length,!and!w!for!width,!how!could!we! write!the!formula?! S:! A"="l"×"w.! T:! (Sketch!a!rectangle!on!the!board,!and!label!the!area!as!50!square! centimeters.)!!If!we!know!that!the!area!of!a!rectangle!is!50! square!centimeters!and!that!the!length!of!the!rectangle!is!10! centimeters,!how!can!we!determine!the!measurement!of!the! width!of!the!rectangle?! ! Lesson&1:& Date:& Investigate!and!use!the!formulas!for!area!and!perimeter!of!rectangles.! 1/7/17! 3.A.6& Page 9 ©!2014!Common!Core,!Inc.!Some!rights!reserved.!commoncore.org! ! This!work!is!licensed!under!a!! Creative!Commons!AttributionENonCommercialEShareAlike!3.0!Unported!License.!! ! ! Lesson&1& 4 3& NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& S:! I!can!use!the!area!formula.!!50!square!centimeters!is!equal!to!10!centimeters!times!the!width.!!10! times!5!equals!50,!so!the!width!is!5!centimeters.!!"!The!area!formula!says!50!=!10!×!!!!!!!!!.!!I!can!solve! that!with!division!!!So,!50!square!centimeters!divided!by!10!centimeters!is!5!centimeters.! Repeat!for!A!=!32!square!m,!l!=!8!m!and!for!A!=!63!square!cm,!w!=!7!cm.! ! ! & & & Problem&4:&&Given&the&area&of&a&rectangle,&find&all&possible&whole&number&combinations&of&the&length&and& width,&and&then&calculate&the&perimeter.& T:! If!a!rectangle!has!an!area!of!24!square!units,!what!whole!numbers!could!be!the!length!and!width!of! the!rectangle?!!Discuss!with!your!partner.! S:! The!length!is!3!units,!and!the!width!is!8!units.!!"!Yes,!but!the!length!could!also!be!4!units!and!the! width!6!units.!!Or,!the!other!way!around:!!length!of!6!units!and!width!of!4!units.!!"!There!are!many! combinations!of!length!and!width!to!make!a!rectangle!with!an!area!of!24!square!units.! T:! With!your!partner,!draw!and!complete!a!table!similar!to!mine!until!you!have!found!all!possible!whole! number!combinations!for!the!length!and!width.! Circulate,!checking!to!see!that!students!are!using!the!length!times!width!formula!to!find!the!dimensions.!! Complete!the!table!with!all!combinations!as!a!class.! T:! Now,!sketch!each!rectangle,!and!solve!for!the!perimeter!using!the!perimeter!formula.! Circulate,!checking!to!see!that!students!draw!rectangles!to!scale!and!solve!for!perimeter!using!the!formula.!! Check!answers!as!a!class.! ! ! ! ! ! ! & & & & ! ! Lesson&1:& Date:& Investigate!and!use!the!formulas!for!area!and!perimeter!of!rectangles.! 1/7/17! 3.A.7& Page 10 ©!2014!Common!Core,!Inc.!Some!rights!reserved.!commoncore.org! ! This!work!is!licensed!under!a!! Creative!Commons!AttributionENonCommercialEShareAlike!3.0!Unported!License.!! ! ! Lesson&1& 4 3& NYS&COMMON&CORE&MATHEMATICS&CURRICULUM& Problem&Set&&(10&minutes)& Students!should!do!their!personal!best!to!complete!the! Problem!Set!within!the!allotted!10!minutes.!!Some! problems!do!not!specify!a!method!for!solving.!!This!is!an! intentional!reduction!of!scaffolding!that!invokes!MP.5,! Use!Appropriate!Tools!Strategically.!!Students!should!solve! these!problems!using!the!RDW!approach!used!for! Application!Problems.! For!some!classes,!it!may!be!appropriate!to!modify!the! assignment!by!specifying!which!problems!students!should! work!on!first.!!With!this!option,!let!the!purposeful! sequencing!of!the!Problem!Set!guide!your!selections!so! that!problems!continue!to!be!scaffolded.!!Balance!word! problems!with!other!problem!types!to!ensure!a!range!of! practice.!!Consider!assigning!incomplete!problems!for! homework!or!at!another!time!during!the!day.! Student&Debrief&&(10&minutes) & Lesson&Objective:!!Investigate!and!use!the!formulas!for! area!and!perimeter!of!rectangles.! The!Student!Debrief!is!intended!to!invite!reflection!and! active!processing!of!the!total!lesson!experience.! Invite!students!to!review!their!solutions!for!the!Problem! Set.!!They!should!check!work!by!comparing!answers!with!a! partner!before!going!over!answers!as!a!class.!!Look!for! misconceptions!or!misunderstandings!that!can!be! addressed!in!the!Debrief.!!Guide!students!in!a! conversation!to!debrief!the!Problem!Set!and!process!the! lesson.!!! You!may!choose!to!use!any!combination!of!the!questions! below!to!lead!the!discussion.! # What!is!a!formula!for!solving!for!perimeter?!! What!formula!is!most!efficient?! # Compare!the!units!used!to!measure!perimeter! and!the!units!used!to!measure!area!(length!units! and!square!units).! # What!was!challenging!about!solving!Problems! 6(a)!and!6(b)?!!How!did!the!process!of!solving! Problems!4!and!5!help!you!to!figure!out!how!to! solve!Problems!6(a)!and!6(b)?! ! Lesson&1:& Date:& Investigate!and!use!the!formulas!for!area!and!perimeter!of!rectangles.! 1/7/17! 3.A.8& Page 11 ©!2014!Common!Core,!Inc.!Some!rights!reserved.!commoncore.org! ! This!work!is!licensed!under!a!! Creative!Commons!AttributionENonCommercialEShareAlike!3.0!Unported!License.!!
© Copyright 2026 Paperzz