Suggested Problems Solution – Sec. 1.6 and p. 78 Math 81, Applied Analysis Instructor: Dr. Doreen De Leon 1 Section 1.6: 8, 19, 20, 27, 70, 34, 38 y 8. x2 y 0 = xy + x2 e x Divide both sides by x2 : y0 = y y + ex . x This equation is homogeneous, so y let v = =⇒ y = xv =⇒ y 0 = xv 0 + v. x Plug in: xv 0 + v = v + ev xv 0 = ev ← separable dv x = ev dx 1 −v e dv = dx Z Zx 1 −v e dv = dx x −e−v = ln |x| + c1 (Note: Remember the absolute value and ”+c.”) e−v = − ln |x| + c2 (Note: You must multiply both sides by -1 before taking the ln (can’t take the log of a negative number).) ln e−v = ln(− ln |x| + c) −v = ln(c − ln |x|) v = − ln(c − ln |x|) y = − ln(c − ln |x|). x So, y = −x ln(c − ln |x|). 19. x2 y 0 + 2xy = 5y 3 Divide both sides by x2 : 2 5 y0 + y = 2 y3. x x This is a Bernoulli equation, with n = 3. So, Let v = y 1−n = y 1−3 , or v = y −2 . 1 (1) Then, we apply the chain rule to obtain v 0 = −2y −3 y 0 . Solving (1) for y 0 gives y0 = 5 3 2 y − y. x2 x So, v 0 4 =⇒ v 0 − v x 5 3 2 = −2y y − y x2 x 10 4 = − 2 + y −2 x x 10 4 =− 2 + v x x 10 = − 2 . ← a linear DE x −3 Integrating factor: p(x) = − R 4 4 =⇒ µ(x) = e − x dx = e−4 ln x = x−4 . x Multiply by µ(x) and solve: x−4 v 0 − 4x−5 v = −10x−6 d x−4 v = −10x−6 dx Z Z d −4 x v dx = −10x−6 dx dx x−4 v = 2x−5 + c v = 2x−1 + cx4 Therefore, y −2 = 2x−1 + cx4 . 20. y 2 y 0 + 2xy 3 = 6x Divide both sides by y 2 : y 0 + 2xy = 6xy −2 . This is a Bernoulli equation with n = −2. So, Let v = y 1−n = y 1−(−2) , or v = y 3 . Then, we apply the chain rule to obtain v 0 = 3y 2 y 0 . Solving (2) for y 0 gives y 0 = 6xy −2 − 2xy. 2 (2) So, v 0 = 3y 2 6xy −2 − 2xy = 18x − 6xy 3 = 18x − 6xv 0 =⇒ v + 6xv = 18x. ← a linear DE Integrating factor: R p(x) = 6x =⇒ µ(x) = e 6xdx 2 = e3x . Multiply by µ(x) and solve: 2 2 2 e3x v 0 + 6xe3x v = 18xe3x d 3x2 2 e v = 18xe3x dx Z Z d 3x2 2 e v dx = 18xe3x dx dx 2 2 e3x v = 3e3x + c 2 v = 3 + ce−3x . Therefore, −3x2 3 y = 3 + ce 1 −3x2 3 . , or y = 3 + ce 27. 3xy 2 y 0 = 3x4 + y 3 Divide both sides by 3xy 2 : y 0 = x3 y −2 + 1 1 y =⇒ y 0 − y = x3 y −2 . 3x 3x Again, we have a Bernoulli equation with n = −2. So, Let v = y 1−n = y 1−(−2) , or v = y 3 . Then, we apply the chain rule to obtain v 0 = 3y 2 y 0 . Since y 0 = x3 y −2 + 1 y, we have 3x 1 3 −2 v = 3y x y + y 3x 1 = 3x3 + y 3 x 1 3 = 3x + v x 1 0 3 =⇒ v − v = 3x . ← a linear DE x 0 2 3 Integrating factor: p(x) = − R 1 1 =⇒ µ(x) = e − x dx = e− ln x = x−1 . x Multiply by µ(x) and solve: x−1 v 0 − x−2 v = 3x2 d x−1 v = 3x2 dx Z Z d −1 x v dx = 3x2 dx dx x−1 v = x3 + c v = x4 + cx. Therefore, y 3 = x4 + cx, or y = x4 + cx 13 . 70. As in the text discussion, suppose that an airplane maintains a heading toward an airport at the origin. If v0 = 500 mi/h and w = 50 mi/h (with the wind blowing due north), and the plane begins at the point (200, 150), show that its trajectory is described by p 1 y + x2 + y 2 = 2(200x9 ) 10 . The equation for the trajectory is y 2 21 y dy = −k 1+ . dx x x This is homogeneous, so let v = y =⇒ y = xv =⇒ y 0 = xv 0 + v. x Plug in: 1 xv 0 + v = v − k(1 + v 2 ) 2 1 xv 0 = −k(1 + v 2 ) 2 Z Z dv k − dx 1 = x (1 + v 2 ) 2 √ ln v + 1 + v 2 = −k ln |x| + c1 (Recall the need for absolute values until exponentiation.) √ 2 eln|v+ 1+v | √ v + 1 + v2 r y 2 y + 1+ x x r y 2 y+x 1+ x p y + x2 + y 2 = e−k ln |x|+c1 = cx−k = cx−k = cx1−k = cx1−k . 4 Since k = w 50 1 = = , we obtain v0 500 10 p p 1 9 y + x2 + y 2 = cx1− 10 =⇒ y + x2 + y 2 = cx 10 . Solve for c: y(200) = 150 so 150 + √ 9 1502 + 2002 = c(200) 10 9 400 = c(200) 10 1 400 10 . c= 9 = 2(200) 200 10 So, y+ p p 1 1 9 x2 + y 2 = 2(200) 10 x 10 , or y + x2 + y 2 = 2(200x9 ) 10 . 34. (2xy 2 + 3x2 )dx + (2x2 y + 4y 3 )dy = 0 M (x, y) = 2xy 2 + 3x2 , N (x, y) = 2x2 y + 4y 3 . Check if exact: ∂M ∂N ∂M = 4xy, = 4xy = =⇒ exact. ∂y ∂x ∂y Next, find F (x, y): Z F (x, y) = M (x, y)dx Z = (2xy 2 + 3x2 )dx = x2 y 2 + x3 + g(y). Find g(y): ∂F (x, y) = N (x, y) =⇒ 2x2 y + g 0 (y) = 2x2 y + 4y 3 ∂y Z 0 3 g (y) = 4y =⇒ g(y) = 4y 3 dy = y 4 . So, F (x, y) = x2 y 2 + x3 + y 4 . Solution: F (x, y) = c, so x2 y 2 + x3 + x4 = c. 38. (x + tan−1 y)dx + x+y dy = 0 1 + y2 M (x, y) = x + tan−1 y, N (x, y) = x+y . 1 + y2 Check if exact: ∂M 1 ∂N 1 ∂M = , = = =⇒ exact. 2 2 ∂y 1 + y ∂x 1+y ∂y 5 Next, find F (x, y): Z F (x, y) = N (x, y)dy Z = x+y dy 1 + y2 = x tan−1 y + 1 ln(1 + y 2 ) + h(x). 2 Find h(x): ∂F (x, y) = M (x, y) =⇒ tan−1 y + h0 (x) = x + tan−1 y ∂x Z 1 0 h (x) = x =⇒ h(x) = xdx = x2 . 2 So, F (x, y) = x tan−1 y + 1 1 ln(1 + y 2 ) + x2 . Solution: F (x, y) = c, so 2 2 x tan−1 y + 2 1 1 ln(1 + y 2 ) + x2 = c. 2 2 p. 78: 1, 3, 10, 17, 35 1. x3 + 3y − xy 0 = 0 Rewrite in a “standard” form: xy 0 − 3y = x3 3 y 0 − y = x2 . x This is a linear equation. Integrating factor: p(x) = − R 3 3 =⇒ µ(x) = e − x dx = e−3 ln x = x−3 . x Multiply by µ(x) and solve: 3 x−3 y 0 − x−3 y = x2 (x−3 ) x −3 0 x y − 3x−4 y = x−1 d −3 1 (x y) = dx Z Zx d −3 1 (x y)dx = dx dx x x−3 y = ln |x| + c y = (ln |x| + c)x3 . 6 3. xy + y 2 − x2 y 0 = 0 Rewrite in a “standard” form: x2 y 0 − xy = y 2 y y2 y0 − = 2 . x x This equation is homogeneous (as well as Bernoulli). I will solve it as a homogeneous equation, leaving the Bernoulli version for you. dy dv y =⇒ y = xv =⇒ = x + v. Let v = x dx dx Plugging in gives dv x + v − v = v2 dx dv x = v2. dx This is a separable equation. 1 1 dv = dx 2 Zx Z v 1 1 dv = dx 2 v x 1 − = ln |x| + c v 1 v=− ln |x| + c 1 y =− . =⇒ x ln |x| + c So, x y=− . ln |x| + c 10. y 0 = 1 + x2 + y 2 + x2 y 2 At first glance, this looks a bit scary. However, if you notice that the right-hand side can be factored to give y 0 = (1 + x2 )(1 + y 2 ), you can see that this equation is separable. So, dy = (1 + x2 )(1 + y 2 ) dx 1 dy = (1 + x2 )dx 2 1+y Z Z 1 dy = (1 + x2 )dx 1 + y2 1 tan−1 y = x + x3 + c 3 1 y = tan x + x3 + c . 3 7 17. ex + yexy + (ey + xeyx )y 0 = 0 The only possibility for solving this one is if the equation is exact. M (x, y) = ex + yexy , N (x, y) = ey + xeyx . Check if exact: ∂N ∂M ∂M = exy + xyexy , = eyx + xyeyx = =⇒ exact. ∂y ∂x ∂y Next, find F (x, y): Z F (x, y) = M (x, y)dx Z = (ex + yexy )dx = ex + exy + g(y). Find g(y): ∂F (x, y) = N (x, y) =⇒ xexy + g 0 (y) = ey + xeyx ∂y Z 0 y g (y) = e =⇒ g(y) = ey dy = ey . So, F (x, y) = ex + exy + ey . Solution: F (x, y) = c, so ex + exy + ey = c. 35. 2xy + 2x dy = dx x2 + 1 This equation is separable and linear! Check it out. • Separable: Rewrite the equation as dy 2x = 2 (y + 1). dx x +1 Then, 1 2x dy = 2 dx y+1 x +1 Z Z 1 2x dy = dx 2 y+1 x +1 ln |y + 1| = ln(x2 + 1) + c1 2 eln |y+1| = eln(x +1)+c1 y + 1 = c(x2 + 1) y = c(x2 + 1) − 2. 8 • Linear: Rewrite the equation as y0 − 2x 2x y = . x2 + 1 x2 + 1 Integrating factor: p(x) = − R 2x 1 2 (− 22x )dx x +1 =⇒ µ(x) = e . = e− ln(x +1) = 2 2 x +1 x +1 Multiply by µ(x) and solve: y0 2x 2x − 2 y= 2 2 2 x + 1 (x + 1) (x + 1)2 d y 2x = 2 2 dx x + 1 (x + 1)2 Z Z 2x d y dx = dx 2 2 dx x + 1 (x + 1)2 1 y =− 2 +c 2 x +1 x +1 y = c(x2 + 1) − 1. 9
© Copyright 2026 Paperzz