Vanderbilt Chemistry - Vanderbilt University

Determination of Molecular Stereochemistry
Using
Chiroptical Spectroscopic Methods
Vanderbilt Chemistry
Prasad L. Polavarapu
Department of Chemistry
Vanderbilt University
Nashville TN 37235 USA
Presented
to
Synthetic community/ Chemical-Biology training program
February 15, 2011
Food for thought
How would you determine:
(A). the absolute configuration of:
Vanderbilt Chemistry
(1). Bromochlorofluoromethane, CHFClBr
(2). Molecules that are chiral solely due to isotopic substitution
(3). Diastereomers of Natural Products
(B). The secondary structures of peptides/proteins
Vanderbilt Chemistry
ORD
Optical
Rotatory
dispersion
Vibrational
Circular
Dichroism
VCD
ECD
Chiroptical
Spectroscopic
methods
Electronic Circular
Dichroism
Vibrational Raman
Optical Activity
VROA
Enantiomers of chiral molecules give oppositely signed chiroptical spectra
and thus enable distinguishing enantiomers
Optical Rotation: Experimental Measurement
Vanderbilt Chemistry
Chiral
sample
monochromator
detector
Linear
polarizer
Specific Rotation:
[]= /c l
Analyzer
 is observed rotation
c is concentration in g / mL
l is path length in dm
Specific Rotation & Molecular structure
Vanderbilt Chemistry
“Experimental determination of the absolute
configuration of bromochlorofluoromethane is a
challenge”.
Wilen SH, Bunding KA, Kascheres CM, Weider MJ.
J Am Chem Soc 1985; 107:6997-6998
Lack of a reliable method to correlate observed
Specific rotation with molecular structure prevented
optical rotation from becoming a structural tool for the
most part of twentieth century.
This status has changed now due to advances in
quantum chemical theories and ever changing
computer technology
Vanderbilt Chemistry
-1G’=-(4/h){[1/(2ns- 2)]Im{,snm,ns}}
Static method of Amos
Chem. Phys. Lett. 1982; 87: 23-26  = -(1/3) -1[G’ + G’ + G’ ]
xx
yy
zz
lim -1G’=-(h/) Im (s/F)|(s/B)
 0
CPHF method implemented
in CADPAC program
Molecule
(R)-methyloxirane
(S)-methylthiirane
(R,R)-dimethyloxirane
(S,S)-dimethylthiirane
Pred
2
-50
70
-248
[] = 13.43 x10-5  2/M
(in deg.cc.dm-1.g-1)
Expt
14
-51
59
-129
Using specific rotation at 589nm and Raman
optical activity, absolute configuration of
bromochlorofluoromethane was assigned as
(S)-(+)/(R)-(-).
Hecht L, Costante J, Polavarapu PL, Collet A,
Barron LD. Angew. Chem. 1997; 36: 885-887; Calculations were done at Hartree-Fock level of
Chem. Eng. News, 1997
theory using 6-31G*/DZP basis sets for 11 molecules
Advanced theoretical methods
Time dependent density functional theory for
specific rotation
Vanderbilt Chemistry
(1). K. Yabana, G. F. Bertsch, Application of time-dependent density
functional theory to optical activity, Phys. Rev. A 60 (1999) 1271-1279;
(2). J. R. Cheeseman, M. J. Frisch, F. J. Devlin, P. J. Stephens,
Hartree-Fock and Density functional theory ab initio calculation of
optical rotation using GIAOs: Basis set dependence,
J. Phys. Chem. A.104 (2000) 1039-1046;
(3). S. Grimme, Calculation of frequency dependent optical rotation
using density functional response theory, Chem. Phys. Lett. 339 (2001) 380-388
(4).K. Ruud, T. Helgaker, Optical rotation studied by density
functional and coupled-cluster methods, Chem Phys Lett. 352 (2002) 533-539.
(5). J. Autschbach, S. Patchkovskii, T. Ziegler, S. J. A. van
Gisbergen, E. J. Baerends, Chiroptical properties from timedependent density functional theory. II. Optical rotations of small to
medium size organic molecules, J. Chem. Phys.117 (2002) 581-592.
Advanced theoretical methods
Coupled cluster theory for specific rotation
Vanderbilt Chemistry
(1). K. Ruud, T. Helgaker, Optical rotation studied by density-functional and
coupled-cluster methods, Chem Phys Lett. 352 (2002) 533-539.
(2). Ruud K, Stephens PJ, Devlin FJ, Taylor PR, Cheeseman JR, Frisch MJ.
Coupled cluster calculations of optical rotation,
Chem. Phys. Lett. 2003; 373:606-614.
(3). Tam MC, Russ NJ, Crawford TD, Coupled cluster calculation of optical
rotatory dispersion of (S)-methyloxirane, J. Chem. Phys. 2004; 121:3550-3557.
(4). Pedersen TB, Sanchez de Meras AMJ, Koch H. Polarizability and optical
rotation calculated from the approximate coupled cluster singles and doubles
CC2 linear response theory using Cholesky decomposition.
J. Chem. Phys. 2004; 120: 8887-8897.
(5). Kongsted J, Pedersen TB, Strange M, Osted A, Hansen AE, Mikkelsen KV,
Pawlowski F, Jorgensen P, Hattig C. “Coupled cluster calculations of optical
rotation of S-propylene oxide in gas phase and solution”,
Chem. Phys. Lett. 2005; 401:385-392
Absolute configuration of
Bromochlorofluoromethane
Vanderbilt Chemistry
Optical rotatory dispersion in bromochlorofluoromethane
Specicic Rotation
4
Predicted with
B3LYP/aug-cc-pVTZ
For (S)-CHFClBr
(S)-(+)-CHFClBr
in C6H12
neat liquid
3
2
H
1
B3LYP/aug-cc-pVTZ
0
350
450
550
 nm)
650
C
F
Cl
Experimental data from: Canceill J, Lacombe L, Collet A.,
J Am Chem Soc 1985; 107: 6993-6996.
Hecht L, Costante J, Polavarapu PL, Collet A, Barron LD.
Angewandte Chemie 1997; 36: 885-887
P. L.Polavarapu, Angewandte Chemie Int. Ed 41(23),4544-4546 (2002).
Br
Summary for
Optical rotatory dispersion
Vanderbilt Chemistry
Remarkable advances in calculation of specific rotations. ORD can now be
calculated through resonant regions using sophisticated levels of theory
 Optical rotation at a single wavelength should never be used for establishing
Molecular structure
“Protocols for the analysis of theoretical optical rotations”, P. L. Polavarapu,
Chirality 2006; 18: 348-356
However need a significant culture change
in reporting
Experimental solution phase optical rotations
Vanderbilt Chemistry
Errors are not usually reported for optical rotation measurements in liquid
solutions
Significant errors can arise from
(a). Preparing solutions with smaller amount (~mg) of samples
(b). Preparing smaller volume (~ mL) solutions
(c). Measuring small (<0.01) optical rotation values
Optical rotation measurements of organometallic compounds: Caveats and
recommended procedures. Dewey MA, Gladysz JA. Organometallics 1993, 12, 2390-2392.
Electronic Circular Dichroism (ECD)
Vanderbilt Chemistry
Excited electronic state
AL-AR
First Vibrational excited state
Vibrational ground state
1
Ground electronic state
0
 ECD technique is more than 100 yrs old
 Gained a new life, in the last decade, with the advent of reliable quantum
chemical theories
Measurement of Electronic Circular Dichroism
Vanderbilt Chemistry

Circularly
Polarized light
sample
Detector
Visible
light source
Experimental
Theoretical
Absorbance
A= - log(I/I0)
Dipole Strength
D01=|<0||1>|2
Circular Dichroism
A=AL-AR
Rotational Strength
R01=Im[<0||1>•<1|m|0>]
A typical ECD spectrum
Vanderbilt Chemistry
(aS)- 3,3'-diphenyl-[2,2'-binaphthalene]-1,1'-diol
ECD and Molecular Structures… the Old Way
Vanderbilt Chemistry
Empirical rules: Octant rule etc
[Lightner, D. A.; Gurst, J. E. Organic Conformational Analysis and
Stereochemistry from Circular Dichroism Spectroscopy, John Wiley & Sons:
New York, 2000.]
Exciton coupling model
[Harada, N.; Nakanishi, K. Circular Dichroism Spectroscopy: Exciton coupling
in Organic Stereochemistry; University Science Books: Mill Valley, CA, 1983.; ]
Semi-classical models: Devoe’s Polarizability model
[Superchi, S.; Giorgio, E.; Rosini, A. Structural determinations by circular
dichroism spectra analysis using coupled oscillator methods: An update of the
applications of the DeVoe polarizability model, Chirality, 2004, 16, 422-451]
ECD and Molecular Structures… the Modern
Way
Vanderbilt Chemistry
For ith electronic transition, calculate rotational strength, Ri.

Ri  Im  so    i  io m   so

Corresponding absorption intensity as dipole strength, Di=|<s||i>|2
or dimensionless oscillator strength, fi. f  8 3me h D
2
e i
2
i
3298.8 
 Peak intensity of Lorentzian band:    22.94 
i
Ri
i

i ,0
Lorentzian band intensity distribution:
i
 10 40
 i ( )   i ,0 
 i2
(  i ) 2   i2
Early Quantum chemical calculations with Random phase approximation:
Hansen AE, Bouman TD, Natural chiroptical spectroscopy: Theory and
computations, Adv Chem Phys 1980;44:545–644.
Hansen AE, Voigt B, Rettrup S, Large-scale RPA calculations of chiroptical
properties of organic molecules: Program RPAC, Int J Quantum Chem 1983;23:
595–611.
Modern Quantum chemical calculations:
Density functional theoretical method for ECD
Vanderbilt Chemistry
Autschbach, J.; Ziegler T.; van Gisbergen SJA.; Baerends EJ. Chiroptical
properties from time-dependent density functional theory. I. Circular dichroism
spectra of organic molecules, J. Chem. Phys. 2002; 116: 6930-6940.
Diedrich C.; Grimme S. Systematic Investigation of Modern Quantum
Chemical Methods to Predict Electronic Circular Dichroism Spectra,
J. Phys. Chem. A. 2003, 107, 2524-2539;
Pecul M.; Ruud K.; Helgaker T. Density functional theory calculation of
electronic circular dichroism using London orbitals,
Chem. Phys. Lett. 2004; 388: 110-119;
Stephens PJ, McCann DM, Devlin FJ, Cheeseman JR, Frisch MJ.
Determination of the absolute configuration of
[3(2)](1,4) barrelenophanedicarbonitrile using concerted time-dependent density
functional theory calculations of optical rotation and electronic circular dichroism.
J Am Chem Soc 126 (2004) 7514-7521.
Modern Quantum chemical calculations:
Coupled Cluster theoretical method for ECD
Vanderbilt Chemistry
Pedersen TB.; Koch H.; Ruud K. Coupled cluster response calculation of
natural chiroptical spectra, J. Chem. Phys. 1999; 110: 2883-2892;
Crawford TD.; Tam MC.; Abrams ML. The current state of ab initio
calculations of optical rotation and electronic circular dichroism spectra.
J. Phys. Chem. 2007, 111, 12057-12068
Molecular stereochemistry:
(+)-P-Ni3[(C5H5N)2N]4Cl2
Vanderbilt Chemistry
Daniel W. Armstrong, , F. Albert Cotton, Ana G. Petrovic, Prasad L Polavarapu, and Molly M. Warnke
Inorg. Chem. 2007, 46, 1535-1537
Electronic circular dichroism
and
Molecular Stereochemistry
(+)-P-Ni3[(C5H5N)2N]4Cl2
450
Vanderbilt Chemistry
BHLYP/LANL2DZ
0
Experimental
Ni3[(C5H5N) 2N]4Cl2
-450
200
400
600
800
(+)-P- absolute configuration was also confirmed using ORD and VCD
Daniel W. Armstrong, , F. Albert Cotton, Ana G. Petrovic, Prasad L Polavarapu, and Molly M. Warnke
Inorg. Chem. 2007, 46, 1535-1537
Summary for ECD
Vanderbilt Chemistry
Remarkable advances in calculation of ECD using sophisticated
levels of quantum chemical theory
ECD and ORD are not independent methods(can be
transformed into each other using Kramers-Kronig transform)
But that does not mean redundancy
•ECD in the UV-Vis range cannot be measured in solvents
such as DMSO but ORD can still be measured in DMSO in the
long wavelength region.
•Experimental ORD may show more sensitivity than what can be
deduced for accessible experimental ECD spectrum
•If ECD is predicted correctly and ORD is not (or vice versa) then
that reflects on the inadequacy of theoretical level used.
But ……………….
Vanderbilt Chemistry
How would you determine:
(A). The absolute configurations of:
(1). Diastereomers of natural products that have same signed ORD and ECD?
(2). Molecules that are chiral solely due to isotopic substitution
(B). Secondary Structures of Peptides and Proteins confidently
Diastereomeric Natural Products
O
O
H
COOCH3
HO
COOCH3
Vanderbilt Chemistry
Garcinia acid dimethyl ester (GADE)
Hibiscus acid dimethyl ester (HADE)
Garcinia acid is extracted from
the dried rind of the fruit of
G.cambogia (tamarind fruit)
ECD
Hibiscus acid is extracted from
the Rosella plant
ORD
ECD and ORD may not be able to discriminate diastereomers
New Chiroptical Spectroscopic methods
(A). Vibrational Circular Dichroism (VCD)
(B). Vibrational Raman Optical Activity (ROA)
What are the advantages?
Vanderbilt Chemistry
(1). All (3N-6) vibrations of a chiral molecule can exhibit VCD/ROA
For a 10 atom molecule, there will be 24 vibrations
Thus, unlike in ECD, no chromophore is needed to observe VCD/ROA
(2). Chiral hydrocarbons do not exhibit measurable ECD/ORD spectra,
but they do give large VCD/ROA spectra
(3). Through isotope labeling, site specific structure can de determined
(4). VCD is a ground electronic state property.
Thus, quantum chemical predictions of VCD are more reliable
and less time consuming
(5). Some of the literature ECD interpretations of absolute configurations and
protein secondary structures are now being corrected in light of VCD studies
(6). Some of the literature crystal structure determinations of absolute
configurations are now being corrected in light of VCD studies
Vibrational Circular Dichroism (VCD)
Vanderbilt Chemistry
Excited electronic state
First Vibrational excited state
Vibrational ground state
1
0
AL-AR
Ground electronic state
Measurement of Vibrational Circular Dichroism

Circularly
Polarized light
Vanderbilt Chemistry
sample
Detector
Infrared
light source
First measured in 1974
Infrared circular dichroim of C-H and C-D stretching vibrations: Observations
Holzwarth G.; Hsu EC.;Mosher HS.; Faulkner TR; Moscowitz A
J Am Chem Soc 1974, 96: 252-253
Remarkable developments in instrumentation and theory have occurred in
1980s and 1990s
Measurement of Vibrational Circular
Dichroism: Fourier Transform instruments
Vanderbilt Chemistry
S
MI
Polarizer
BS
Fixed Mirror
Detector
Sample
PEM
Lens
Moving Mirror
FT
LA
Filter
IAC
I DC
FT
1. Liquid samples
Routine
2. Gas samples
3. Films (dried solutions)
Samples with high vapor pressure
became possible recently
A typical VCD spectrum [(+)-vanol]
Vanderbilt Chemistry
 VCD magnitudes are of the order of
10-4 absorbance units
 100 times smaller than ECD magnitudes
Density functional theoretical method
Vanderbilt Chemistry
J. R. Cheeseman, M. J. Frisch, F. J. Devlin, P. J. Stephens, Ab initio calculation
of atomic axial tensors and vibrational rotational strengths using density
functional theory, Chem. Phys. Lett. 252 (1996) 211-220.
Computer Programs:
Freeware:
DALTON program [www.kjemi.uio.no/software/dalton/ ]
Commercial:
Gaussian 09 [www.gaussian.com];
Turbomole [www.turbomole.com];
ADF [www.scm.com]
Diastereomeric Natural Products
O
O
H
COOCH3
HO
COOCH3
ECD
VCD can discriminate diastereomers
better than ECD/ORD
Vanderbilt Chemistry
ORD
Diastereomeric Natural Products
O
O
H
COOCH3
HO
COOCH3
Vanderbilt Chemistry
VCD is much more powerful than ECD/ORD for discriminating diastereomers
Summary for VCD

Vanderbilt Chemistry
VCD provides an independent reliable approach from
ECD/ORD for molecular structure determination
Are there any disadvantages of VCD ?
(1). Higher concentrations than those needed for ECD/ORD
VCD measurements require ~1-20 mg/100 L
(2). Sample should be soluble in IR transparent solvents
(CCl4, CHCl3, CD2Cl2, CD3CN, D2O, DMSO-d6 etc)
Natural products whose structures have been determined/confirmed using VCD
Vanderbilt Chemistry
Carboxylic acids (1-4)
Monoterpenes (5-14)
Alkaloids
Cinchonidine
Schizozygane alkaloids
(15-19)
Iso-schizozygane alkaloids
(20-21)
Tropane alkaloids
(22-28)
Natural products whose structures have been determined/confirmed using VCD
Vanderbilt Chemistry
Tropane alkaloids(22-28)
Montanine-type alkaloids
(29-30)
Iridoids (31-34)
Meroditerpenoids (35-38)
Verticillane diterpenoids(39)
Sesquiterpenes (40-46)
Compounds 40-43:
P. J. Stephens, D. M. McCann, F. J. Devlin, A. B. Smith,
J. Nat. Prod. 2006, 69, 1055-1064.
Natural products whose structures have been determined/confirmed using VCD
Vanderbilt Chemistry
Halogenated sesquiterpenes
(47-51)
Endoperoxides (52)
Furochromones (53-56)
Eremophilanoids (57-59)
Eudesamanolides (60)
Presilphiperfolanes (61-63)
Longipinane derivatives (64-66)
Cruciferous phytoalexins (67-73)
Natural products whose structures have been determined/confirmed using VCD
Vanderbilt Chemistry
Furanones (74-80)
Furanocoumarins (81)
Klaivanolide (82)
Pheromones(83-84)
Norlignan(85-86)
Taxol
Ginkgolides
Peptides
(pexiganan, cyclosporins)
Axially chiral natural products
Dicurcuphenol B (87)
Dicurcuphenol C (88)
Gossypol (90)
Cephalochromin (91)
Vanderbilt Chemistry
Vibrational Raman Optical Activity (VROA)
Measurement of
Vibrational Raman Optical Activity (VROA)
Vanderbilt Chemistry
Excited electronic state
Virtual state
Incident light
Scattered light
First Vibrational excited state
1
IR-IL
Ground electronic state
Vibrational ground state
0
sample
laser
First Measured in 1973
L. D. Barron, M. P. Bogaard and A. D. Buckingham, JACS. 95, 603 (1973)
IR-IL
Quantum Chemical predictions of ROA
Vanderbilt Chemistry
Hartree-Fock Numerical differentiation approach using Amos’
static method for G tensor
Advances in
Quantum mechanical predictions
Vanderbilt Chemistry
Numerical differentiation methods
Hartree-Fock Numerical differentiation with Dynamic method and London orbitals
T Helgaker, K. Ruud, K. L. Bak, P. Jorgensen, J. Olsen. Farad Disc 1994, 99,165-180
2000s
Density functional numerical differentiation method
K. Ruud, T. Helgaker, P. Bour, J. Phys. Chem. A. 106, 7448 (2002)
Analytical methods
2000s
Time-dependent Hartree–Fock schemes for analytical evaluation of the Raman
Intensities, Quinet, O.; Champagne, B. J. Chem. Phys. 2001, 115, 6293-6299.
TDHF Evaluation of the Dipole−Quadrupole Polarizability and Its Geometrical
Derivatives, Quinet, O.; Liegeois, V.; Champagne, B. J. Chem. Theory Comput. 2005, 1, 444-452
An analytical derivative procedure for the calculation of vibrational Raman optical
activity spectra, Liegeois, V.; Ruud K.; Champagne, B. J. J. Chem. Phys. 2007; 127, 204105.
Absolute configuration
of
Bromochlorofluoromethane
Comparison of experimental
ROA of (-) CHFClBr with
predictions for (R)-CHFClBr
HF(or MP2)/DZP
Vanderbilt Chemistry
Freq(cm-1)
Experiment
zx104
B3LYP/6-311++G(2d,2p)
Freq(cm-1)
zx104
3022
1305
1206
1062
774
662
427
315
218
-0.7
-2.4
-2.8
-4.5
-5.1
5.9
10.2
-2.1
-1.9
3173
1321
1212
1065
744
634
417
305
218
-0.3
0.5
-1.0
-0.2
-4.9
3.2
1.1
0.0
-0.3
The Absolute Configuration of Bromochlorofluoromethane.
P L. Polavarapu, Angewandte Chemie, 41(23),4544-4546 (2002).
Absolute Configuration of Bromochlorofluoromethane
from Experimental and Ab Initio Theoretical Vibrational
Raman Optical Activity. Hecht L, Costante J, Polavarapu PL,
Collet A, Barron LD. Angewandte Chemie 1997; 36: 885-887
F
Cl
Br
Absolute
configuration
of
CHFClBr is
(S)-(+)
Absolute configuration of
chirally deuterated neopentane:
(R)-[2H1, 2H2, 2H3]-neopentane Vanderbilt Chemistry
Boltzmann
population
weighted
Spectrum
Absolute configuration of chirally deuterated neopentane,
J. Haesler, I. Schindelholz, E. Riguet, C. G. Bochet & W. Hug, Nature 446, 526-529 (2007)
Summary for ROA
Vanderbilt Chemistry
ROA provides an independent and reliable approach to determine
Chiral molecular structures
 Well suited for biological molecules in aqueous solutions
How Can You Benefit
From
These New Developments
Vanderbilt Chemistry
There are three independent methods, fully developed and ready to be used.
ECD and ORD
VCD
ROA
These two should be viewed as one
 No need for crystallization, unlike X-ray
 No need for derivatization with shift reagents,
unlike in NMR
 Experimental measurements done for solutions or
for film samples
How about……………….
Vanderbilt Chemistry
Secondary Structures of Peptides and Proteins
Peptides and proteins:
ECD has been widely used for determining Secondary structures
ECD spectra-structure correlations
-Sheet
15
Molar Ellipticity
Vanderbilt Chemistry
10
5
0
-5
218
-10
200
220
240
260
Wavelength (nm)
1.5
10
217
Molar Ellipticity
Molar Ellipticity
222
0
230
-1.5
200
-turn
-3
0
Polyproline II
-10
-20
-30
190
-4.5
200
220
240
Wavelength (nm)
260
collagen
196
210
230
Wavelength (nm)
250
Peptides and proteins:
VCD spectra-structure correlations
-Helix
6
6
Pepsin
1643
BSA
-Helix + -Sheet Vanderbilt Chemistry
-Sheet
5
Ovalbumin
4
4
3
1662
1640
Hemoglobin
1512
1
2
1516
1666
5
1632
 A 10
2
2
 A 10
 A 10
5
5
4
Chymotrypsin
Trypsin
-2
-1
-2
-2
-4
1800
1662
1632
1520
1516
-4
1628
1516
1662
1700
1600
1500
-1
Frequency (cm )
1400
-3
1800
1700
1600
1500
-1
Frequency (cm )
1400
-6
1800
1700
1600
1500
1400
-1
Frequency (cm )
Polyproline
II (PPII)
2
5
collagen
1686
1670
5
1
4
0
 A 10
AX10
1516
0
0
0
1628
-turn
0
-5
-1
1662
-10
1800
1636
1700
1600
-1
Wavenumber (cm )
-2
1850
1750
1650
1550
-1
Wavenumber (cm )
1450
Secondary Structures of peptides and Proteins
VP1 peptide: Domain IV of Calpain enzyme
Time dependent structural transition of VP1
Vanderbilt Chemistry
5
VP1: GTAMRILGGVI
1624
VCD
3
AX10
5
1670
0
-3
50
1640
VCD band at 1609 indicates
1609
-sheet structure possibly fibril formation
0.9
0
ECD
Absorbance
CD (mdeg)
-5
1682
-50
Double minima
indicate -helical structure
-100
195
215
235
Wavelenth (nm)
255
0.6
1674
1620
1697
0.3
TEM image
275
0
1775
1725
1675
1625
1575
-1
Wavenumber (cm )
Ganesh Shanmugam, Nsoki Phambu, Prasad L Polavarapu, BioPhysChem.
Secondary structures of peptides and proteins
Vanderbilt Chemistry
Do not bet your life if using ECD !!
Verify your conclusions using VCD/ROA
Global Summary
Vanderbilt Chemistry
 Older methods of structural interpretations using ECD and ORD
have been replaced with much more reliable modern quantum
chemical methods
Two new chiroptical spectroscopic methods, VCD and ROA,
have emerged in the last two decades as powerful techniques for
chiral molecular structure determination
Combined applications of these methods yield a reliable means
of chiral molecular structure determination
Coming this year ……August 2011
Vanderbilt Chemistry
Comprehensive Chiroptical Spectroscopy
Eds, N. Berova, P. L. Polavarapu, K. Naksnishi, R. W. Woody (John Wiley)
Volume 1: Instrumentation, Methodologies, and Theoretical Simulations
Volume 2: Applications in Stereochemical Analysis of Synthetic Compounds,
Natural Products, and Biomolecules
More than 50 chapters and 1000 pages !!
Academic Collaborators
Sergio Abbate
(Italy)
Daniel Armstrong
(Texas)
Brian Bachman
(Vanderbilt)
P
Balaram
(India)
Laurence Barron
(Glasgow)
Nina
Berova (Columbia Univ)
James Birch
(UK)
F. A.
Cotton
(Texas)
Jeanne Crassous
(France)
Carlo De Micheli
(Italy)
Jozef Drabowicz
(Poland)
Helmut Duddeck
(Germany)
Carl
Ewig
(Vanderbilt)
Joe
Gal
(Denver)
B. A. Hess
(Vanderbilt)
Ibrahim Ibnusaud
(India)
Vanderbilt Chemistry
Tibor Kurtan
(Hungary)
Tingyu Li
(Vanderbilt)
Zsuzsa Majer
(Hungary)
Larry Nafie
(Syracuse)
Koji
Nahanishi (Columbia Univ)
Bruce Novak
(North Carolina)
Arvi
Rauk
(Calgary)
Carmelo Rizzo
(Vanderbilt)
Gabrielle Roda
(Italy)
Kenneth Ruud
(Tromso)
William Salzman
(Arizona)
Larry
Schaad
(Vanderbilt)
Volker Schurig
(Germany)
Howard Smith
(Vanderbilt)
Gerald Stubbs
(Vanderbilt)
William Wulff
(Michigan)
Coworkers
Research Associates
P. K. Bose
G. Chen
B. Galabov
D. Henderson
D. Michalska
R. S. Pandurangi
G. Shanmugam
K. Srinivasan
Graduate Students
Darlene Back
T. M. Black
P. K. Bose
S. T. Pickard
D. K. Chakraborty
T. Chandramouly
Z. Deng
J. He
J. McBride
A. Petrovic
P. Zhang
F. Wang
C. Zhao
Vanderbilt Chemistry
Undergraduate students
S. R. Chatterjee
S. Chawla
P. Chen
A Dehlavi
J. Goring
K. Hammer
Neha Jeirath
Sheng Lin
A.G. Petrovic
R. Reddy
A. Schwaab
S. E. Vick
Sheena Walia
Acknowledgments
Vanderbilt Chemistry
Funding over the years
National Institute of Health
National science Foundation
National center for Supercomputing Applications