Devoted to shape your Future Solutions : MCQ : Prism & Dispersion of Light 01. From A + = i + e, given the prism is equilateral, A = 60o, also, i = e = 3A/4 A + = 2 e = 2 3 60 / 4 60 + = 90 = 30o. (D) 02. In case of minm deviation, r1 = r2 = r and A = 2r A = 2 30 = 60, also it is given that, m = 30o, hence by formula of prism = Sin [ ( A + m ) / 2 ] / Sin A/2 = Sin 45 / Sin 30 = (1/2) / (1/2) = 2. (A) 03. = Sin [ ( A + m ) / 2 ] / Sin A/2 2 = Sin [ ( 60 + m ) / 2 ] / Sin 60/2 2 = Sin [ ( 60 + m ) / 2 ] / Sin 30 2 = 2 Sin [ ( 60 + m ) / 2 ] 1 / 2 = Sin [ ( 60 + m ) / 2 ] = Sin 45 ( 60 + m ) / 2 = 45 60 + m = 90 m = 30. Now, i = e, hence from i + e = A + 2i = 60 + 30 i = 45. (B) 04. As material of all the objects is same, hence dispersive power will also be the same. (D) 05. m = A, = 2 cos A/2 1.5 = 2 cos A/2 cos A/2 = 0.75 A/2 = cos –1 ( 0.75 ) = 41o A = 82o. (C) 06. For minm deviation, A = 2r and m = ( - 1 ) A = ( - 1 ) 2r = ( 1.5 – 1 ) 2r m = 0.5 2r = r. (B) 07. As the light incidents normally, hence, i = 0, r1 = 0 A = r1 + r2 r2 = 30. Hence for the refraction at the other face = Sin e / Sin r2 1.5 = Sin e / Sin 30 Sin e = 1.5 / 2 = 0.75 e = Sin –1 ( 0.75 ) e = 48o36/. Now A + = i + e 30 + = 0 + 48o36/ = 18o36/. (B) 08. i = 45o, r = 30o 30 = Sin i / Sin 300 o = Sin 45o / Sin 30o 45 30 = ( 1/2) / ( 1/2) = 2. (A) 09. For resultant deviation zero ( qáʽààtã âwjvÂà ÎàåÂu ÑàçÂàç Ñçmä) A/ = - ( - 1 )A / ( / - 1 ) A/ = - ( 1.54 – 1 ) 4o / ( 1.72 – 1 ) A/ = - 54 × 40 / 72 = 3o. (B) 10. Again, A/ = - ( - 1 )A / ( / - 1 ) A/ = - ( 1.54 – 1 ) 6o / ( 1.72 – 1 ) A/ = - 54 × 60 / 72 = 9/ 2 = 4o 30/ (B) 11. Given, = cot A/2, & = Sin [ ( A + m ) / 2 ] / Sin A/2 cos A / 2 sin( A + m ) / 2 o o = sin A / 2 sin A / 2 cos A/2 = sin (A + m) / 2 sin ( 90 – A/2 ) = sin (A + m) / 2 90 – A/2 = A + m / 2 m = 180 – 2A (B) 13. Angular dispersion ( §ýàç½àãu âwÕ àçq½à ) = ( V - R ) A = ( 1.6 – 1.5 ) × 5o = 0.5o. (C) 14. For equilateral ( ytràÑC âØàsäk Ñçmä ) A = 60o and in minm deviation position ( ¥wÞ ÂuåÂàmt âwjvÂà §ýL ¡ wÐnà tçÞ ) i = e = 54o. Hence from i + e = A + m 60 + m = 2 × 54 m = 108 – 60 = 48o. (C) o 45 15. As = 2, sin C = 1 / = 1 / 2 o 45 C = 45o Hence the light ray will exit parallel to the Second face ( ¡ mß Zà§ýàÎà â§ýʽà ÀåyÊã ymÑ §çý ÐqÎàJu âÂàªàêmî Ñàçªàã). àã (A) 16. By the property of right angle prism ( yt§ýàç½à âZà³t §çý ªàä½à yç ) correct option is – (A) 17. For TIR, Sin C = 1/, Sin C = 1 / 1.5 Sin C = 10 / 15 = 0.66 C = Sin -1 0.66 which lies somewhere between 300 & 450. 0 0 ( §íýàÞâm§ý §ýàç½à C §ýà tàÂà 30 ¥wÞ 45 §çý rãj §ýÑãA qÊ Ñàçªàà ) Now, = Sin i / Sin r1, 1.5 = Sin 300/Sin r1 Sin r1 = 1 / 3 = 0.33, hence r1 must be less 0 than 300. ( r1 §ýà tàÂà 30 yç §ýt Ñàçªàà ). Now, r1 + r2 = A, r2 = 900 – Sin -1 ( 0.33 ) r2 > 60 0. Hence, by above calculations it is clear that r2 > C. Hence the ray cannot exit from the second face ( ¡ mß Zà§ýàÎà â§ýʽà ÀåyÊã ymÑ yç âÂàªàêmî ÂàÑãA Ñàç q४àã) q४àã (D) 18. As material of both the prisms are same, hence 1 = 2. 1 : 2 = 1 : 1. (A) 19. From the diagram, is the angle of incidence at the second face. Hence for TIR, 1 / Sin 10 / 8 1.25 Given, = 1.2 + 0.8 × 10 – 14 / 2. Putting, = 400 nm = 400 × 10 – 9 = 4 × 10 – 7 . 1 = 1.2 + 0.8 × 10 – 14 / 16 × 10 – 14 1 = 1.2 + 0.8/16 = 1.2 + 0.05 = 1.25. Now for = 500 nm = 500 × 10 – 9 = 5× 10 – 7 2 = 1.2 + 0.8 × 10 – 14 / 25 × 10 – 14 2 = 1.2 + 0.8/25 = 1.2 + 0.03 = 1.23 Hence only 400nm will be totally internally reflected ( ¡ mß §çýwv 400nm §ýL â§ýʽà Ñã qå½àê ¡ àÂmáʧý qÊàwâmêm Ñàçªàã) àã (A) 20. jåÞâ§ý âZà³t kv tçÞ »äþràçuà ªàuà Ñè, ¡ mß wg = Sin [ ( A + m ) / 2 ] / Sin A/2 wg = Sin 450 / Sin 300 = 2, hence critical angle, Sin C = 1 / wg = Sin C = 1 / 2 C = 450. (B) 21. Dispersive Power âwÕ àçq½à Õ àtmà §ýL qáÊsàxàyç = v - r / y – 1 = ( 1.64 – 1.52 ) / 1.6 – 1 = 0.12 / 0.6 = 1/5 = 0.2. (C) 22. From A + = i + e, 60 + 42 = 50 + e e = 520. Hence the angle made by the exit ray with the second face ( ¡ mß âÂàªàêmî â§ýʽà õàÊà ÀåyÊç Äýv§ý yç rÂààuà ªàuà §ýàç½à ) = 90 – 52 = 380. (C) 23. = Sin [ ( A + m ) / 2 ] / Sin A/2 = Sin 450 / Sin 300 = 2 = 1.414. Hence by definition, 12 = v1 / v2 vg = va / vg = 3 × 10 10 / 2 vg = 32 × 10 10 / 2 vg = 1.5 × 1.414 × 10 10 = 2.12 × 10 10 cm/s. (A) 24. A + = i + e, and as the ray exit lary to the second face, e = 0, and for thin prism = ( - 1 ) A i + 0 = A + ( - 1 ) A i = A. A. (D) 25. For achromatic combination ( ¡ w½àê§ý yÞuàçÞªà Ñçmä) 1 / 2 = f1/f2 1 / 2 = 2 / 3 (B) 26. For this, Sin i = Sin A = 2 × Sin 300 Sin i = 1 / 2 i = 450. (C) 27. Here, = Sin i / Sin r = Sin 2A / Sin A = 2 Sin A Cos A / Sin A = 2 CosA. (B) 28. by = Sin [ ( A + m ) / 2 ] / Sin A/2 = Sin [ A + 180 – 2A /2 ] / Sin A/2 = Sin ( 90 – A/2 ) / Sin A/2 = Cot A/2. (D) 29. There are two TIRs, hence minm value of is given by, = 1 / Sin 450 = 2. (B) 30. When A = m, = 2 Cos A/2 Cos A/2 = 1.5 / 2 = 0.75 A/2 = Cos -10.75 = 410 A = 820. (C) 31. For minm deviation, A = 2r = 600 r = 30 (A) A I 32. y O D From the diagram, O is object and I is its image, as prism is thin, angle = arc / radius = y / D y = D, but for a thin prism =(-1)A A, hence the distance of the object from the image y = ( - 1 ) AD. (D) 33. As from qun, 28, if = Cot A/2, then the angle of minm deviation m = 180 – 2A. (D) 34. Grazing angle is given by ( qæ™þ ÐqÎàJ §ýàç½à) Sin i = SinA ( 2 – 1 ) – CosA, given A = 600 and = 1.5 Sin i = 0.4682 i = Sin -1 ( 0.4682 ) = 280. (B) 35. For a prism at any general position ( â§ýyã âZà³t §ýL â§ýyã sã yàtàÂu ¡ wÐnà tçÞ ) A + = i + e, 60 + = 55 + 46 = 410. Hence angle of minm deviation must be less than 410, < 410. (A)
© Copyright 2026 Paperzz