M OLECUL A R PH Y SICS , 1997, V OL. 91, N O. 3, 459 ± 469 High resolution Fourier transform infrared emission spectra of lithium iodide By B. GUO, M. DULICK, S. Y OST and P. F. BER NA TH Centre for M olecular Beams and Laser Chemistry, Departm ent of Chemistry, University of Waterloo, W aterloo, Ontario, Canada N2L 3G1 (Received 27 Novem ber 1996; accepted 27 Novem ber 1996 ) The high resolution inf rared emission spectrum of lithium iodide has been recorded with a 7 Fourier transf orm spectrometer. A total of 1024 transmissions with D v = 1 for LiI (f rom v= 1 ® 0 to v = 8 ® 7 ) , 387 transitions with D v = 2 ( v = 2 ® 0 to v = 6 ® 4 ) and 504 6 transitions with D v = 1 for LiI ( v = 1 ® 0 to v = 5 ® 4 ) have been assigned. The infrared data have been used to determine improved mass-dependent Dunham Y lm coe cients f or the 1 + ground X S electronic state. The mass-independent Dunham Ulm coe cients were obtained along with Born± Oppenheimer breakdown constants. Finally, all of the data were ® tted to the eigenvalues of the radial SchroÈ dinger equation containing a modi® ed Morse potential f unction to determine the parameters of an e ective ground state potential. 1. Introduction A s classical examples of ionic bonding, the alkali halides have been studied extensively in the past. The microwave absorption spectra of LiI and several other alkali halides were observed by Honig et al. [1] in 1954 when they reported values for the rotational constants of 7 LiI and 6LiI, the electric quadrupole coupling constants for 127I and the electric dipole moment for 7 LiI. In 1962, R usk and Gordy [2] reported on millimetre wave spectra. Breivogel et al. [3] studied radiofrequency and microwave spectra of 6 LiI using the molecular beam electric-resonance method, and measured the electric dipole moment for 6LiI. Jacob son and R amsey [4] studied the hyper® ne structure of 7 LiI in a molecular beam and reported spin± rotation constants for both iodide and lithium, and also nuclear spin± spin coupling constants. High resolution laser excitation and ¯ uores1 cence spectra of the A 0 + - X S + electronic transition were measured by Schaefer and coworkers [5]. A n overview of the earlier literature of LiI was provided by Berry [6a] and Dyke [6b] in 1979. In the infrared region, some LiI bandheads were measured by Klemperer et al. [7] and estimates of the vibrational constants were made. The high resolution infrared spectrum of the D v = 2 transitions of 7LiI was recorded by Thompson et al. [8] using a diode laser, and a total of 109 transitions was reported . The microwave and infrared diode laser data were used by Coxon and Hajigeorgiou [9] to determ ine an e ective potential energy curve for the ground states of 7 LiI. However, this analysis was limited by the small 0026± 8976/97 $12 . 00 Ñ number of overtone transitions available and the lack of infrared data for the minor 6LiI isotopomer. W e report here our high resolu tion infrared emission spectrum of LiI recorded with a Bruker Fourier transform spectrom eter. The infrared data were used to determ ine improved mass-dependent Dunham Ulm con1 stants for the ground X S + electronic state. The massindependent Dunham Ulm constants also were obtained along with Born± Oppenheimer breakdown constants. Finally, all of the data were ® tted using the eigenvalues of the radial SchroÈ dinger equation containing a modi® ed Morse potential function to determ ine an e ective ground state potential. 2. Experimental details The high resolution infrared emission spectrum of lithium iodide was recorded with the Bruker IFS 120 HR Fourier transf orm spectrom eter at the University of Waterloo. The D v = 1 vibrational bands were recorded with a liquid helium cooled Si:B detector and 1 a KBr beamsplitter at a resolution of 0 . 005 cm - . The -1 spectral bandpass was limited to ~ 400 - 760 cm by a cold ® lter for the upper wavenum ber limit and by the beamsplitter cuto for the lower limit. The D v = 2 vibrational bands were obtained with the same setup except that a bandpass ® lter was used which limited 1 the spectra to the range 750- 1250 cm - and the resolu1 tion was 0 . 01 cm . The experimental setup was similar to that described earlier [10, 11]. Gas-phase lithium iodide molecules were produced in a tube furnace by gradually heating up 1997 T aylor & Francis Ltd. 460 B. Guo et al. 6 0 . 0005 cm - 1 for most of the strong and unblended lines. However, many of the weaker lines and the blended features were determ ined only to a lesser preci1 sion of about 6 0 . 001 cm - . The vibrational bands LiI were identi® ed and sorted using an interactive colour Loomis± Wood program. The rotational assignments were made by predicting the vibration± rotation line positions using the previous rotational and vibrational constants [3]. In total, 1915 vibration± rotational transitions were assigned to the two isotopomers and the transitions are listed in tables 1 ( 6 LiI) and 2 ( 7LiI) . Figure 1. A n overview of the D v = 1 vibrational bands of LiI. The strong headband is the v = 1 ® 0 f undam ental 7 of LiI. lithium metal chips while I 2 vapour ¯ owed into the system . The lithium metal pieces were contained in a carbon boat lying in the central part of a 1 . 2 m long and 5 cm diameter mullite tube which was sealed with a KBr window at each end. The tube was heated by a commercial furnace. The ends of the mullite tube were water cooled in order to prevent condensation on the windows. A fter the sample was loaded, the mullite tube was pum ped and heated to about 150 ë C overnight in order to remove residual water from inside the tube. A bout 10 Torr of argon gas was introduced into the tube before the tem perature was increased. The 1 400 - 750 cm - spectral region was monitored as the temperature was increased. W hen the temperature reached about 640 ë C, emission from LiI was noted. The temperature was then increased to 710ë C, and the spectrum was taken with the coaddition of 100 scans. Figure 1 shows an overview of the fundamental and related hot bands of lithium iodide. The D v = 2 bands were reco rded at the same temperature with 60 scans coadded. 3. Results and discussion The program `PC-D ecomp’ , developed by J. W. Brault, was used for the spectral line measurem ent. Using this program, the spectral line pro® les were ® tted using Voigt lineshape functions. The signal to noise ratio was as high as 30 : 1 for the unblended lines. Even with an abundance of 7 . 3% , 6LiI yielded a good em ission spectrum . The D v = 2 bands, however, are much weaker and share the same spectral region as the much stronger CO2 emission bands. The strong CO2 lines were present also in the D v = 1 band region, presumably as an impurity from the carbon liner. The measured spectral lines were calibrated with CO2 line positions taken from the literature [12, 13]. The precision of the line position measurem ent is better than 3.1. D unham m odel The line positions of each isotopomer were ® tted to the Dunham energy level expression [14] å, F ( v, J ) = Y lm ( v + ) [J ( J + 1 ) ]m . ( 1) 1 l 2 lm The pure rotational transitions [1± 3] were included in the ® t after correctio n for the e ects of electric ® elds and hyper® ne structure. The Dunham constants are listed in table 3 for each isotopomer, and depend on the isotopic masses, varying approximately with i powers of the reduced mass ratio ¹ / ¹ , Y i lm = Y lm () ¹ ¹ ( 2l + m ) i ( 2) , where the i designates an isotopic species. A ll of the assigned infrared vibration± rotation transitions were ® tted also to the mass-independent Dunham expression: F ( v, J ) = å, lm ¹ - ( 2l + m ) ( Ulm 1 + me D M Li ´ ( v + 12) l [J ( J + 1 ) ]m , Li lm ) ( 3) where m e is the electron mass, M Li is the Li atomic mass, and the D lm are Born± Oppenheimer breakdown constants. Since only one naturally occurring isotope of iodine exists, all information on Born± Oppenheimer breakdown is con® ned to the lithium atom. Finally, a set of `constrained’ Ulm values was obtained from a ® t where all Ulm for m < 1 were treated as independent param eters while all rem aining U lm were ® xed to values determ ined from the constraint relations implicit in the Dunham model [10, 14]. The `constrained’ massindependent Dunham coe cients and Born± Oppenheim er breakdo wn constants are listed in table 4. 3.2. Param eterized potential m odel In order to estimate energies of high lying vibration± rotational levels of the ground state, a reliable internuclear potential energy function is required. Such a 461 FT IR spectra of L iI Table 1. 6 LiI infrared transitions (in cm Line Observed d Line Observed d Line Observed P( 65 ) P( 57 ) P( 52 ) P( 47 ) P( 42 ) P( 37 ) P( 32 ) P( 27 ) P( 20 ) P( 14 ) P( 9 ) P( 3 ) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 62 ) R ( 67 ) R ( 74 ) 442 . 8520 455 . 1791 462 . 6496 469 . 9347 477 . 0234 483 . 9115 490 . 5921 497 . 0589 505 . 7414 512 . 8271 518 . 4714 524 . 9261 535 . 8210 540 . 3580 544 . 6278 548 . 6266 552 . 3480 555 . 7870 558 . 9404 561 . 8020 564 . 3682 566 . 6327 568 . 5953 570 . 2488 571 . 5902 572 . 9419 - 5 1 7 9 4 2 0 - 1 1 3 - 6 0 8 6 - 1 0 0 - 7 - 2 - 1 3 - 8 2 2 - 2 34 P(64) P(56) P(51) P(46) P(41) P(36) P(31) P(25) P(19) P(13) P(7 ) R ( 3) R ( 8) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) R ( 53 ) R ( 58 ) R ( 63 ) R ( 68 ) R ( 75 ) 444 . 4169 456 . 6883 464 . 1222 471 . 3675 478 . 4170 485 . 2642 491 . 9029 499 . 5885 506 . 9454 513 . 9749 520 . 6633 532 . 0019 536 . 7489 541 . 2330 545 . 4496 549 . 3929 553 . 0586 556 . 4413 559 . 5362 562 . 3385 564 . 8455 567 . 0509 568 . 9507 570 . 5416 571 . 8213 573 . 0783 - 8 2 0 1 0 - 1 1 41 0 0 7 - 1 2 0 0 - 3 - 1 0 - 1 - 6 4 6 2 - 4 3 - 18 P( 63 ) P( 55 ) P( 50 ) P( 45 ) P( 40 ) P( 35 ) P( 30 ) P( 24 ) P( 18 ) P( 12 ) P( 6 ) R ( 4) R ( 9) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 49 ) R ( 54 ) R ( 59 ) R ( 64 ) R ( 69 ) (1, 0 ) Band 445 . 9726 458 . 1897 465 . 5865 472 . 7927 479 . 8026 486 . 6090 493 . 2048 500 . 8338 508 . 1402 515 . 1140 521 . 7433 532 . 9737 537 . 6667 542 . 0977 546 . 2604 550 . 1487 553 . 7580 557 . 0835 560 . 1206 562 . 8633 565 . 3104 567 . 4547 569 . 2923 570 . 8228 572 . 0390 P( 63 ) P( 52 ) P( 47 ) P( 42 ) P( 37 ) P( 32 ) P( 27 ) P( 22 ) P( 17 ) P( 11 ) P( 5 ) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) R ( 51 ) R ( 56 ) R ( 61 ) R ( 66 ) R ( 72 ) 440 . 2661 456 . 7817 463 . 9964 471 . 0183 477 . 8402 484 . 4584 490 . 8649 497 . 0502 503 . 0131 509 . 8627 516 . 3701 528 . 3172 532 . 8623 537 . 1407 541 . 1516 544 . 8889 548 . 3472 551 . 5222 554 . 4087 557 . 0026 559 . 2997 561 . 2958 562 . 9864 564 . 3682 565 . 6133 5 - 1 1 0 - 9 0 12 - 2 3 2 2 - 1 15 1 - 1 - 1 - 1 1 0 0 1 1 - 4 - 12 - 28 P(60) P(51) P(46) P(41) P(36) P(31) P(26) P(21) P(15) P(9 ) P(4 ) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 62 ) R ( 67 ) 444 . 8524 458 . 2397 465 . 4158 472 . 4004 479 . 1812 485 . 7597 492 . 1187 498 . 2613 505 . 3350 512 . 0698 517 . 4202 529 . 2464 533 . 7416 537 . 9643 541 . 9213 545 . 6031 549 . 0048 552 . 1227 554 . 9510 557 . 4860 559 . 7232 561 . 6582 563 . 2882 564 . 6081 - 26 - 1 - 5 14 - 1 30 0 2 16 - 3 - 2 - 4 36 - 2 1 1 - 3 1 0 1 1 - 1 1 - 4 P( 55 ) P( 50 ) P( 45 ) P( 40 ) P( 35 ) P( 30 ) P( 25 ) P( 20 ) P( 14 ) P( 8 ) R ( 3) R ( 8) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) R ( 53 ) R ( 58 ) R ( 63 ) R ( 68 ) (2, 1 ) Band 452 . 3637 459 . 6871 466 . 8286 473 . 7696 480 . 5129 487 . 0465 493 . 3650 499 . 4627 506 . 4798 513 . 1600 525 . 4683 530 . 1661 534 . 6046 538 . 7777 542 . 6800 546 . 3065 549 . 6515 552 . 7115 555 . 4809 557 . 9574 560 . 1344 562 . 0090 563 . 5770 564 . 8355 P( 58 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 29 ) P( 24 ) P( 19 ) P( 13 ) P( 7 ) R ( 3) 442 . 1681 455 . 2922 462 . 3246 469 . 1625 475 . 7992 482 . 2272 488 . 4438 494 . 4371 501 . 3311 507 . 8902 519 . 0093 31 - 3 - 2 1 4 - 5 14 1 - 3 8 36 P(57) P(48) P(43) P(38) P(33) P(28) P(23) P(17) P(11) P(6 ) R ( 5) 443 . 6526 456 . 7157 463 . 7078 470 . 5066 477 . 1061 483 . 4884 489 . 6600 496 . 7709 503 . 5528 508 . 9489 520 . 8965 2 15 - 3 6 47 4 8 - 10 - 24 0 - 5 P( 56 ) P( 47 ) P( 42 ) P( 37 ) P( 32 ) P( 27 ) P( 22 ) P( 16 ) P( 10 ) P( 5 ) R ( 6) ( 3, 2 ) Band 445 . 1334 458 . 1244 465 . 0838 471 . 8416 478 . 3960 484 . 7396 490 . 8649 497 . 9310 504 . 6535 509 . 9993 521 . 8288 -1 ).a d Line Observed d Line Observed d 33 1 1 5 2 1 - 1 0 0 5 1 17 0 - 3 1 1 0 0 2 - 8 1 - 1 - 13 - 1 0 P( 62 ) P( 54 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 29 ) P( 23 ) P( 17 ) P( 11 ) P( 5 ) R (5 ) R (10 ) R (15 ) R (20 ) R (25 ) R (30 ) R (35 ) R (40 ) R (45 ) R (50 ) R (55 ) R (60 ) R (65 ) R (70 ) 447 . 5268 459 . 6871 467 . 0431 474 . 2109 481 . 1807 487 . 9450 494 . 4985 502 . 0756 509 . 3268 516 . 2422 522 . 8153 533 . 9314 538 . 5743 542 . 9523 547 . 0603 550 . 8932 554 . 4450 557 . 7150 560 . 6928 563 . 3771 565 . 7636 567 . 8473 569 . 6249 571 . 0918 572 . 2443 - 6 32 - 2 - 2 2 - 1 1 14 10 - 4 13 - 4 1 2 2 2 - 10 9 0 - 2 1 1 5 5 - 1 P(59) P(53) P(48) P(43) P(38) P(33) P(28) P(21) P(15) P(10) P(4 ) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) R ( 51 ) R ( 56 ) R ( 61 ) R ( 66 ) R ( 72 ) 452 . 1392 461 . 1709 468 . 4921 475 . 6208 482 . 5489 489 . 2731 495 . 7834 504 . 5281 511 . 6686 517 . 3623 523 . 8747 534 . 8814 539 . 4711 543 . 7955 547 . 8487 551 . 6261 555 . 1225 558 . 3332 561 . 2532 463 . 8787 566 . 2046 568 . 2277 569 . 9447 571 . 3471 572 . 6163 - 6 0 - 3 - 2 - 12 2 4 0 - 5 2 - 3 2 0 1 - 1 0 - 1 1 - 1 2 0 4 20 0 - 6 2 31 0 - 21 - 2 2 1 1 0 3 15 2 - 1 1 2 5 0 - 1 - 7 1 1 1 0 3 P( 54 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 29 ) P( 24 ) P( 19 ) P( 13 ) P( 7 ) R (4 ) R (9 ) R (14 ) R (19 ) R (24 ) R (29 ) R (34 ) R (39 ) R (44 ) R (49 ) R (54 ) R (59 ) R (64 ) R (69 ) 453 . 8464 461 . 1312 468 . 2326 475 . 1355 481 . 8381 488 . 3273 494 . 6025 500 . 6551 507 . 6168 514 . 2391 526 . 4278 531 . 0745 535 . 4603 539 . 5773 543 . 4272 546 . 9978 550 . 2867 553 . 2885 556 . 0003 558 . 4167 560 . 5338 562 . 3447 563 . 8537 565 . 0494 28 20 - 5 - 8 15 - 1 2 - 1 - 1 - 3 5 - 2 - 3 - 26 - 1 1 2 - 4 - 1 0 2 - 24 1 1 P(53) P(48) P(43) P(38) P(33) P(28) P(23) P(18) P(12) P(6 ) R ( 5) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 50 ) R ( 55 ) R ( 60 ) R ( 65 ) R ( 70 ) 455 . 3164 462 . 5689 469 . 6280 476 . 4907 433 . 1519 489 . 5997 495 . 8309 501 . 8389 508 . 7431 515 . 3077 527 . 3780 531 . 9735 536 . 3036 540 . 3714 544 . 1637 547 . 6783 550 . 9103 553 . 8547 556 . 5077 558 . 8638 560 . 9207 562 . 6736 564 . 1175 565 . 2503 0 3 - 16 - 21 2 - 1 0 3 - 13 - 18 6 5 - 24 2 1 1 3 0 3 - 4 0 4 - 2 - 5 5 39 2 0 3 0 22 54 5 4 13 P( 55 ) P( 46 ) P( 41 ) P( 36 ) P( 31 ) P( 26 ) P( 21 ) P( 15 ) P( 9 ) P( 3 ) R (7 ) 446 . 6041 459 . 5345 466 . 4512 473 . 1629 479 . 6813 485 . 9829 492 . 0659 499 . 0706 505 . 7414 512 . 0698 522 . 7483 - P(51) P(45) P(40) P(35) P(30) P(25) P(20) P(14) P(8 ) R ( 2) R ( 8) 452 . 4263 460 . 9336 467 . 8132 474 . 4879 480 . 9587 487 . 2169 493 . 2558 500 . 2055 506 . 8199 518 . 0462 523 . 6577 - - - - - - 20 4 0 - 60 - 2 2 - 2 5 1 3 7 - - 3 1 24 - 1 - 1 0 - 3 2 - 2 14 2 (continued ) 462 B. Guo et al. Table 1. Line Observed d R ( 9) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 50 ) R ( 55 ) R ( 61 ) R ( 66 ) 524 . 5566 528 . 8980 532 . 9737 536 . 7810 540 . 3131 543 . 5657 546 . 5339 549 . 2136 552 . 0420 554 . 0720 556 . 1095 557 . 4711 - P( 54 ) P( 39 ) P( 34 ) P( 29 ) P( 23 ) P( 17 ) P( 12 ) R ( 7) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 50 ) R ( 55 ) R ( 61 ) - P( 47 ) P( 31 ) P( 22 ) P( 16 ) R ( 17 ) R ( 24 ) R ( 30 ) R ( 37 ) R ( 43 ) R ( 49 ) R ( 55 ) a Line Observed d 4 2 9 3 2 1 2 1 2 0 5 10 R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 51 ) R ( 56 ) R ( 62 ) R ( 67 ) 525 . 4466 529 . 7352 533 . 7577 537 . 5097 540 . 9859 544 . 1825 547 . 0932 549 . 7140 552 . 4720 554 . 4450 556 . 4059 557 . 7094 442 . 3687 463 . 2563 469 . 8305 476 . 1946 483 . 5591 490 . 6021 496 . 2232 516 . 3216 523 . 2400 527 . 2183 530 . 9307 534 . 3693 537 . 5304 540 . 4073 542 . 9971 545 . 2984 547 . 2998 549 . 3091 1 - 18 - 6 - 38 6 - 4 - 1 - 3 24 - 4 - 3 - 4 2 - 6 - 10 14 - 5 4 P(53) P(38) P(33) P(28) P(22) P(16) P(11) R ( 8) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) R ( 51 ) R ( 56 ) R ( 62 ) 446 . 6041 467 . 7434 478 . 7130 485 . 6359 518 . 4146 523 . 7125 527 . 8276 532 . 1243 535 . 3685 538 . 1967 540 . 6039 60 23 4 8 - 67 - 6 1 - 4 7 0 - 8 P(42) P(30) P(21) P(15) R ( 18 ) R ( 25 ) R ( 33 ) R ( 38 ) R ( 44 ) R ( 51 ) R ( 56 ) Line Observed Line Observed d Line Observed d 4 4 0 - 2 - 4 1 - 1 - 6 - 2 31 0 41 R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 63 ) R ( 68 ) 526 . 3283 530 . 5605 534 . 5299 538 . 2273 541 . 6480 544 . 7876 547 . 6409 550 . 6841 552 . 8896 554 . 7995 556 . 6900 557 . 9280 34 3 1 2 1 1 0 30 - 5 - 2 - 4 0 R (12 ) R (17 ) R (22 ) R (27 ) R (32 ) R (37 ) R (42 ) R (48 ) R (53 ) R (58 ) R (64 ) R (70 ) 527 . 1929 531 . 3759 535 . 2913 538 . 9334 542 . 2985 545 . 3810 548 . 1767 551 . 1467 553 . 2944 555 . 1449 556 . 9624 558 . 3334 - R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 49 ) R ( 54 ) R ( 59 ) R ( 65 ) 528 . 0509 532 . 1807 536 . 0418 539 . 6296 542 . 9379 545 . 9635 548 . 7012 551 . 6004 553 . 6899 555 . 4809 557 . 2227 - 443 . 8143 464 . 5890 471 . 1215 477 . 4483 484 . 7544 491 . 7449 497 . 3230 517 . 2235 524 . 0550 527 . 9830 531 . 6404 535 . 0235 538 . 1283 540 . 9483 543 . 4809 545 . 7213 547 . 6655 549 . 6003 6 1 3 18 - 3 - 1 32 10 - 1 2 - 4 - 7 - 3 - 7 - 5 - 1 4 - 8 P( 45 ) P( 37 ) P( 32 ) P( 26 ) P( 21 ) P( 15 ) R ( 2) R ( 9) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 64 ) ( 4, 3 ) Band 455 . 1078 465 . 9128 472 . 4004 479 . 9172 485 . 9419 492 . 8786 511 . 6686 518 . 1128 524 . 8618 528 . 7357 532 . 3392 535 . 6672 538 . 7151 541 . 4782 543 . 9529 546 . 1341 548 . 0172 550 . 1487 0 11 - 27 - 1 - 2 2 22 - 1 - 1 - 4 - 4 - 4 - 3 - 5 0 1 - 8 - 5 P( 44 ) P( 36 ) P( 31 ) P( 25 ) P( 20 ) P( 14 ) R (3 ) R (13 ) R (18 ) R (23 ) R (28 ) R (33 ) R (38 ) R (43 ) R (48 ) R (53 ) R (59 ) 456 . 4854 467 . 2259 473 . 6767 481 . 1395 487 . 1256 494 . 0029 512 . 6153 521 . 5686 525 . 6574 529 . 4782 533 . 0271 536 . 3036 539 . 2903 541 . 9967 544 . 4125 546 . 5339 548 . 6880 - 3 3 1 - 2 49 3 - 23 - 26 - 8 - 4 - 3 38 - 7 0 - 2 - 8 5 P(42) P(35) P(30) P(24) P(18) P(13) R ( 5) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 49 ) R ( 54 ) R ( 60 ) 459 . 2167 468 . 5327 474 . 9420 482 . 3538 489 . 4507 495 . 1171 514 . 4903 522 . 4093 526 . 4435 530 . 2103 533 . 7014 536 . 9207 539 . 8534 542 . 5028 544 . 8605 546 . 9231 549 . 0048 453 . 4215 468 . 9940 479 . 8881 486 . 7569 519 . 2043 524 . 4255 529 . 7352 532 . 6936 535 . 8679 539 . 0468 540 . 9656 3 - 1 - 4 - 6 - 48 - 6 - 9 0 - 3 3 10 P( 35 ) P( 28 ) P( 19 ) P( 14 ) R ( 21 ) R ( 26 ) R ( 34 ) R ( 39 ) R ( 45 ) R ( 52 ) R ( 58 ) ( 5, 4 ) Band 462 . 6496 471 . 4758 482 . 2139 487 . 8711 521 . 5074 525 . 1287 530 . 3500 533 . 2501 536 . 3564 539 . 4544 541 . 6480 29 10 1 4 - 18 5 - 1 - 11 - 7 6 - 6 P( 34 ) P( 27 ) P( 18 ) P( 13 ) R (22 ) R (28 ) R (35 ) R (41 ) R (46 ) R (53 ) R (59 ) 463 . 9356 472 . 7020 483 . 3552 488 . 9722 522 . 2547 526 . 4997 530 . 9527 534 . 3320 536 . 8356 539 . 8534 541 . 9720 30 6 - 80 - 26 1 - 1 - 2 - 4 11 41 - 8 P(32) P(25) P(17) P(12) R ( 23 ) R ( 29 ) R ( 36 ) R ( 42 ) R ( 48 ) R ( 54 ) 466 . 4827 475 . 1355 484 . 5060 490 . 0702 522 . 9892 527 . 1695 531 . 5440 534 . 8556 537 . 7550 540 . 2323 d - 3 3 1 4 2 2 2 0 - 17 - 3 - 2 - 27 - 1 1 0 4 0 1 0 - 1 - 2 22 2 - 14 1 3 3 - 1 - 5 3 - 3 - 3 0 - 28 1 - 18 - 5 - 2 - 3 6 - 28 31 23 4 0 3 - 4 - 2 6 - 7 Observed - calculated di erences ( columns labelled d ) are in units of 0 . 0001 cm - 1 . potential function can be determ ined from a least squares ® t [10] of the combined 7LiI and 6LiI data set to the eigenvalues of the radial SchroÈ dinger equation: ( Continued. 2 2 h d 2¹ dR 2 - U eff ( R ) + E ( v , J ) ´ - 2 h 1 + q( R) 2¹ J ( J + 1) R2 [ ) U ] y ( R , v, J ) = 0 , with ( 4) where the e ective internuclear potential for vibrational motion is given by U eff ( R ) = U BO ( R ) + ULi ( R ) M Li , and the form of the Born± Oppenheimer potential is chosen to be ( 5) BO ( R) = D e [- 1 - e- b b ( R) = z b (¥ )= å (R) 1 e- b ( ¥ ) å i b iz , ], 2 ( 6) ( 7) i= 0 , ( 8) R - Re . R + Re ( 9) b i i= 0 and z= 463 FT IR spectra of L iI Table 2. 7 LiI infrared transitions (in cm Line Observed d Line Observed d Line Observed P( 78 ) P( 72 ) P( 67 ) P( 62 ) P( 57 ) P( 52 ) P( 47 ) P( 41 ) P( 36 ) P( 30 ) P( 25 ) P( 20 ) P( 15 ) P( 10 ) P( 5 ) R ( 0) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 37 ) R ( 42 ) R ( 48 ) R ( 54 ) R ( 59 ) R ( 64 ) R ( 69 ) R ( 74 ) R ( 79 ) R ( 84 ) R ( 89 ) 400 . 8613 409 . 1570 415 . 9239 422 . 5519 429 . 0353 435 . 3690 441 . 5475 448 . 7507 454 . 5723 461 . 3327 466 . 7728 472 . 0325 477 . 1061 481 . 9914 486 . 6817 492 . 0479 497 . 1206 501 . 1183 504 . 9039 508 . 4725 511 . 8209 514 . 9450 518 . 3930 521 . 0113 523 . 8422 526 . 3283 528 . 1331 529 . 6917 531 . 0015 532 . 0595 532 . 8623 533 . 4113 533 . 7014 12 - 1 - 2 1 3 4 - 1 - 4 - 2 - 1 - 2 - 1 - 7 0 - 1 2 2 - 1 0 - 1 - 2 - 2 - 2 - 1 - 1 - 2 - 1 0 0 - 1 - 14 2 16 P(77) P(71) P(66) P(61) P(56) P(51) P(46) P(40) P(35) P(29) P(24) P(19) P(14) P(9 ) P(4 ) R ( 1) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 49 ) R ( 55 ) R ( 60 ) R ( 65 ) R ( 70 ) R ( 75 ) R ( 80 ) R ( 85 ) R ( 90 ) 402 . 2570 410 . 5216 417 . 2613 423 . 8601 430 . 3139 436 . 6170 442 . 7643 449 . 9287 455 . 7163 462 . 4339 467 . 8394 473 . 0624 478 . 0989 482 . 9451 487 . 5960 492 . 9136 497 . 9373 501 . 8926 505 . 6350 509 . 1599 512 . 4645 516 . 1311 518 . 9353 521 . 5069 524 . 2806 526 . 7089 528 . 4647 529 . 9737 531 . 2333 532 . 2408 532 . 9934 533 . 4898 533 . 7266 11 2 3 - 1 0 1 - 1 - 1 - 1 - 11 - 1 0 - 2 - 1 - 1 - 1 5 - 1 - 1 - 2 6 - 1 - 1 0 - 1 - 1 0 0 - 1 - 1 - 3 2 4 P( 75 ) P( 70 ) P( 65 ) P( 60 ) P( 55 ) P( 50 ) P( 45 ) P( 39 ) P( 34 ) P( 28 ) P( 23 ) P( 18 ) P( 13 ) P( 8 ) P( 3 ) R ( 2) R ( 8) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 50 ) R ( 56 ) R ( 61 ) R ( 66 ) R ( 71 ) R ( 76 ) R ( 81 ) R ( 86 ) R ( 91 ) (1, 0 ) Band 405 . 0319 411 . 8803 418 . 5924 425 . 1627 431 . 5866 437 . 8589 443 . 9746 451 . 0996 456 . 8535 463 . 5301 468 . 8986 474 . 0846 479 . 0836 483 . 8910 488 . 5025 493 . 7715 498 . 7440 502 . 6583 506 . 3574 509 . 8386 513 . 0980 516 . 7104 519 . 4685 521 . 9929 524 . 7095 527 . 0797 528 . 7863 530 . 2457 531 . 4551 532 . 4119 533 . 1134 533 . 5581 533 . 7416 P( 74 ) P( 68 ) P( 63 ) P( 58 ) P( 52 ) P( 47 ) P( 42 ) P( 37 ) P( 32 ) P( 27 ) P( 21 ) P( 16 ) P( 10 ) P( 5 ) R ( 0) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) R ( 51 ) R ( 56 ) R ( 61 ) R ( 67 ) R ( 72 ) R ( 77 ) R ( 82 ) R ( 87 ) 401 . 5492 409 . 6457 416 . 2428 422 . 6978 430 . 2491 436 . 3736 442 . 3398 448 . 1429 453 . 7779 459 . 2402 465 . 5615 470 . 6257 476 . 4576 481 . 1055 486 . 4216 491 . 4475 495 . 4081 499 . 1578 502 . 6921 506 . 0074 509 . 1003 511 . 9670 514 . 6039 517 . 0079 519 . 1753 521 . 1033 522 . 7889 524 . 4874 525 . 6292 526 . 5199 527 . 1567 527 . 5373 9 3 2 0 0 0 0 - 1 0 0 10 - 6 - 1 1 - 4 - 2 - 1 2 1 - 1 - 1 - 1 - 2 0 - 1 - 1 0 1 0 1 0 - 3 P(72) P(67) P(62) P(57) P(51) P(46) P(41) P(36) P(31) P(26) P(20) P(15) P(9 ) P(4 ) R ( 1) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 62 ) R ( 68 ) R ( 73 ) R ( 78 ) R ( 83 ) R ( 88 ) 404 . 2673 410 . 9761 417 . 5451 423 . 9715 431 . 4866 437 . 5797 443 . 5136 449 . 2829 454 . 8843 460 . 3114 466 . 5884 471 . 6171 477 . 4026 482 . 0115 487 . 2800 492 . 2567 496 . 1758 499 . 8818 503 . 3727 506 . 6416 509 . 6904 512 . 5129 515 . 1040 517 . 4608 519 . 5803 521 . 4603 523 . 0967 524 . 7356 525 . 8271 526 . 6677 527 . 2537 527 . 5826 - P( 71 ) P( 66 ) P( 61 ) P( 56 ) P( 50 ) P( 45 ) P( 40 ) P( 35 ) P( 30 ) P( 25 ) P( 19 ) P( 13 ) P( 8 ) P( 3 ) R ( 2) R ( 8) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) R ( 53 ) R ( 58 ) R ( 64 ) R ( 69 ) R ( 74 ) R ( 79 ) R ( 84 ) R ( 89 ) ( 2, 1 ) Band 405 . 6216 412 . 3013 418 . 8422 425 . 2388 432 . 7177 438 . 7794 444 . 6809 450 . 4173 455 . 9837 461 . 3756 467 . 6088 473 . 5758 478 . 3401 482 . 9092 488 . 1300 493 . 0572 496 . 9335 500 . 5973 504 . 0446 507 . 2711 510 . 2743 513 . 0495 515 . 5938 517 . 9034 519 . 9757 521 . 8070 523 . 6826 524 . 9739 526 . 0156 526 . 8050 527 . 3397 527 . 6173 14 1 - 1 1 1 0 0 - 7 - 1 - 2 0 - 1 - 1 1 0 2 7 0 0 - 24 - 15 - 1 5 4 1 3 1 0 - 3 1 3 - 2 - - - - - ).a Line Observed 2 0 2 0 1 1 1 2 1 1 2 2 1 1 0 1 9 1 2 1 2 2 0 1 1 0 0 0 1 0 2 3 6 P( 74 ) P( 69 ) P( 64 ) P( 59 ) P( 54 ) P( 49 ) P( 43 ) P( 38 ) P( 32 ) P( 27 ) P( 22 ) P( 17 ) P( 12 ) P( 7 ) P( 2 ) R (3 ) R (9 ) R (14 ) R (19 ) R (24 ) R (29 ) R (35 ) R (40 ) R (46 ) R (51 ) R (57 ) R (62 ) R (67 ) R (72 ) R (77 ) R (82 ) R (87 ) 406 . 4144 413 . 2338 419 . 9177 426 . 4594 432 . 8534 439 . 0947 446 . 3749 452 . 2640 459 . 1069 464 . 6175 469 . 9506 475 . 0998 480 . 0605 484 . 8291 489 . 4007 494 . 6213 499 . 5443 503 . 4155 507 . 0713 510 . 5077 513 . 7225 517 . 2805 519 . 9923 522 . 9366 525 . 1287 527 . 4406 529 . 0981 530 . 5077 531 . 6667 532 . 5725 533 . 2231 533 . 6159 7 3 1 1 1 0 1 0 2 2 2 4 0 2 0 2 0 1 1 4 1 1 0 1 1 1 0 0 1 2 1 5 P( 70 ) P( 65 ) P( 60 ) P( 55 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 29 ) P( 23 ) P( 18 ) P( 12 ) P( 7 ) P( 2 ) R (3 ) R (9 ) R (14 ) R (19 ) R (24 ) R (29 ) R (34 ) R (39 ) R (44 ) R (49 ) R (54 ) R (59 ) R (65 ) R (70 ) R (75 ) R (80 ) R (85 ) R (90 ) 406 . 9685 413 . 6207 420 . 1330 426 . 5004 433 . 9427 439 . 9727 445 . 8416 451 . 5444 457 . 0745 463 . 4825 468 . 6227 474 . 5443 479 . 2695 483 . 7995 488 . 9722 493 . 8491 497 . 6833 501 . 3043 504 . 7077 507 . 8902 510 . 8477 513 . 5770 516 . 0745 518 . 3370 520 . 3610 522 . 1441 523 . 9607 525 . 2024 526 . 1939 526 . 9324 527 . 4160 527 . 6401 d - -1 Line Observed d 20 1 - 1 - 1 - 1 - 2 - 11 - 1 - 2 - 7 - 1 1 - 2 - 1 - 2 2 - 2 0 - 1 - 7 - 1 - 1 1 - 1 - 1 0 0 0 0 - 2 1 4 P(73) P(68) P(63) P(58) P(53) P(48) P(42) P(37) P(31) P(26) P(21) P(16) P(11) P(6 ) P(1 ) R ( 4) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 36 ) R ( 41 ) R ( 47 ) R ( 52 ) R ( 58 ) R ( 63 ) R ( 68 ) R ( 73 ) R ( 78 ) R ( 83 ) R ( 88 ) 407 . 7880 414 . 5819 421 . 2376 427 . 7514 434 . 1139 440 . 3244 447 . 5666 453 . 4216 460 . 2234 465 . 6991 470 . 9955 476 . 1069 481 . 0299 485 . 7597 490 . 2912 495 . 4625 500 . 3356 504 . 1638 507 . 7763 511 . 1691 514 . 3383 517 . 8414 520 . 5064 523 . 3943 525 . 5383 527 . 7917 529 . 3999 530 . 7595 531 . 8682 532 . 7230 533 . 3222 533 . 6629 6 2 - 1 12 - 2 - 1 - 3 - 1 0 - 2 2 - 2 0 2 0 0 - 1 - 2 - 1 - 1 - 2 - 1 - 1 0 - 1 - 2 0 - 1 0 - 2 0 1 6 1 - 1 - 1 1 0 0 0 - 19 - 1 4 0 - 2 - 1 5 0 - 2 0 - 1 0 - 1 - 1 - 1 0 - 1 1 0 0 0 - 1 0 - 23 P(69) P(64) P(59) P(53) P(48) P(43) P(38) P(33) P(28) P(22) P(17) P(11) P(6 ) P(1 ) R ( 4) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 50 ) R ( 55 ) R ( 60 ) R ( 66 ) R ( 71 ) R ( 76 ) R ( 81 ) R ( 86 ) R ( 91 ) 408 . 3089 - 4 414 . 9345 1 421 . 4180 - 4 429 . 0057 0 435 . 1604 - 9 441 . 1596 1 446 . 9956 0 452 . 6646 - 1 458 . 1618 - 1 464 . 5251 0 469 . 6280 0 475 . 5046 - 2 480 . 1916 2 484 . 6820 2 489 . 8052 - 1 494 . 6332 4 498 . 4251 2 502 . 0025 0 505 . 3620 0 508 . 4998 0 511 . 4119 - 1 514 . 0953 1 516 . 5443 - 16 518 . 7611 1 520 . 7371 0 . 522 4700 - 13 524 . 2290 0 525 . 4208 0 526 . 3618 - 1 . 527 0497 0 527 . 4818 - 2 527 . 6562 - 3 (continued ) d 464 B. Guo et al. Table 2. Continued Line Observed d Line Observed d Line Observed P( 71 ) P( 66 ) P( 61 ) P( 56 ) P( 51 ) P( 46 ) P( 41 ) P( 36 ) P( 31 ) P( 26 ) P( 21 ) P( 16 ) P( 11 ) P( 6 ) P( 1 ) R ( 5) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 50 ) R ( 55 ) R ( 61 ) R ( 66 ) R ( 71 ) R ( 77 ) R ( 82 ) R ( 89 ) 400 . 7765 407 . 3957 413 . 8789 420 . 2197 426 . 4120 432 . 4512 438 . 3327 444 . 0515 449 . 6021 454 . 9814 460 . 1836 465 . 2039 470 . 0382 474 . 6826 479 . 1319 485 . 0266 488 . 9900 492 . 7456 496 . 2909 499 . 6156 502 . 7220 505 . 6045 508 . 2598 510 . 6842 512 . 8747 514 . 8275 516 . 8541 518 . 2750 519 . 4498 520 . 5305 531 . 1538 521 . 5998 16 - 2 - 3 2 1 - 1 - 1 - 1 - 6 - 2 1 1 - 1 4 4 14 1 - 2 19 - 1 - 1 0 1 1 2 - 1 0 0 2 2 - 2 1 P(70) P(65) P(60) P(55) P(50) P(45) P(40) P(35) P(30) P(25) P(20) P(15) P(10) P(5 ) R ( 1) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) R ( 51 ) R ( 56 ) R ( 62 ) R ( 67 ) R ( 72 ) R ( 78 ) R ( 83 ) 402 . 1091 408 . 7038 415 . 1585 421 . 4701 427 . 6322 433 . 6404 439 . 4897 445 . 1769 450 . 6923 456 . 0361 461 . 2021 466 . 1857 470 . 9823 475 . 5877 481 . 7055 485 . 8350 489 . 7578 493 . 4701 496 . 9717 500 . 2545 503 . 3159 506 . 1538 508 . 7631 511 . 1410 513 . 2840 515 . 1895 517 . 1578 518 . 5297 519 . 6549 520 . 6750 521 . 2483 - 8 1 - 3 1 0 0 0 16 0 - 1 - 1 - 1 - 2 - 1 - 2 3 - 1 - 15 - 1 - 2 - 7 - 2 0 0 - 1 0 0 0 1 - 3 0 P( 69 ) P( 64 ) P( 59 ) P( 54 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 29 ) P( 24 ) P( 19 ) P( 14 ) P( 9 ) P( 4 ) R (2 ) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 57 ) R ( 52 ) R ( 57 ) R ( 63 ) R ( 68 ) R ( 73 ) R ( 79 ) R ( 84 ) P( 62 ) P( 57 ) P( 52 ) P( 47 ) P( 42 ) P( 37 ) P( 32 ) P( 27 ) P( 22 ) P( 17 ) P( 12 ) P( 6 ) R ( 2) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 38 ) R ( 43 ) R ( 48 ) R ( 54 ) R ( 60 ) R ( 65 ) R ( 72 ) R ( 79 ) R ( 84 ) 407 . 6964 414 . 0109 420 . 1770 426 . 1937 432 . 0547 437 . 7555 443 . 2907 448 . 6561 453 . 8464 458 . 8584 463 . 6863 469 . 2312 477 . 0234 481 . 0743 484 . 9191 488 . 5557 491 . 9789 495 . 1862 498 . 1727 501 . 4614 503 . 9515 506 . 2109 508 . 6126 510 . 6720 512 . 1224 513 . 7428 514 . 8781 515 . 3883 - 4 11 - 1 0 - 1 1 - 1 - 1 - 6 - 2 - 1 - 1 - 10 0 - 2 2 0 3 - 1 - 1 - 3 - 1 - 1 2 - 1 0 1 2 P(61) P(56) P(51) P(46) P(41) P(36) P(31) P(26) P(21) P(16) P(11) P(5 ) R ( 3) R ( 8) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 50 ) R ( 55 ) R ( 61 ) R ( 66 ) R ( 73 ) R ( 80 ) R ( 85 ) 408 . 9711 415 . 2552 421 . 3924 427 . 3786 433 . 2069 438 . 8758 444 . 3777 449 . 7085 454 . 8639 459 . 8387 464 . 6277 470 . 1275 477 . 8497 481 . 8598 485 . 6632 489 . 2574 492 . 6376 495 . 8010 499 . 3050 501 . 9779 504 . 4221 507 . 0494 508 . 9797 510 . 9804 512 . 3834 513 . 9350 515 . 0003 515 . 4603 3 2 - 2 0 - 11 - 1 1 0 1 - 3 - 19 - 10 - 9 0 - 1 1 - 2 0 - 2 0 - 1 0 - 1 - 9 0 1 1 5 P( 58 ) P( 52 ) P( 46 ) 407 . 8712 415 . 2237 422 . 3607 4 3 2 P(57) P(50) P(45) 409 . 1109 417 . 6270 423 . 5283 1 2 8 - - d Line Observed d (3, 2 ) Band 403 . 4400 410 . 0059 416 . 4311 422 . 7143 428 . 8463 434 . 8231 440 . 6400 446 . 2924 451 . 7752 457 . 0817 462 . 2137 467 . 1602 471 . 9189 476 . 4837 482 . 5489 486 . 6359 490 . 5174 494 . 1889 497 . 6458 500 . 8852 503 . 9023 506 . 6940 509 . 2573 511 . 5885 513 . 6843 515 . 5425 517 . 4523 518 . 7749 519 . 8500 520 . 8099 521 . 3323 5 1 - 16 - 1 0 0 - 1 0 1 - 21 1 0 0 - 18 11 0 - 1 1 0 4 2 - 1 0 0 - 1 7 4 3 2 - 2 - 1 P( 68 ) P( 63 ) P( 58 ) P( 53 ) P( 48 ) P( 43 ) P( 38 ) P( 33 ) P( 28 ) P( 23 ) P( 18 ) P( 13 ) P( 8 ) P( 3 ) R (3 ) R (8 ) R (13 ) R (18 ) R (23 ) R (28 ) R (33 ) R (38 ) R (43 ) R (48 ) R (53 ) R (58 ) R (64 ) R (69 ) R (74 ) R (80 ) R (85 ) 404 . 7635 411 . 3019 417 . 7008 423 . 9528 430 . 0541 435 . 9994 441 . 7839 447 . 4026 452 . 8509 458 . 1244 463 . 2178 468 . 1270 472 . 8476 477 . 3758 483 . 3821 487 . 4289 491 . 2687 494 . 8974 498 . 3109 501 . 5062 504 . 4786 507 . 2251 509 . 7422 512 . 0265 514 . 0751 515 . 8844 517 . 7361 519 . 0093 520 . 0350 520 . 9350 521 . 4062 - P( 60 ) P( 55 ) P( 50 ) P( 45 ) P( 40 ) P( 35 ) P( 30 ) P( 25 ) P( 20 ) P( 15 ) P( 9 ) P( 4 ) R ( 4) R ( 9) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 51 ) R ( 56 ) R ( 62 ) R ( 67 ) R ( 74 ) R ( 81 ) R ( 86 ) ( 4, 3 ) Band 410 . 2398 416 . 4942 422 . 6021 428 . 5571 434 . 3543 439 . 9896 445 . 4575 450 . 7536 455 . 8732 460 . 8118 466 . 4936 471 . 0183 478 . 6682 482 . 6370 486 . 3990 489 . 9507 493 . 2878 496 . 4073 499 . 8577 502 . 4851 504 . 8835 507 . 4542 509 . 3376 511 . 2810 512 . 6344 514 . 1170 515 . 1140 515 . 5246 6 3 0 0 - 3 - 1 - 1 - 1 - 2 - 3 3 2 - 5 - 1 0 1 - 1 0 - 1 - 1 0 - 1 2 - 2 - 2 0 18 33 P( 59 ) P( 54 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 29 ) P( 24 ) P( 19 ) P( 14 ) P( 8 ) P( 3 ) R (5 ) R (10 ) R (15 ) R (20 ) R (25 ) R (30 ) R (36 ) R (41 ) R (46 ) R (52 ) R (58 ) R (63 ) R (70 ) R (75 ) R (82 ) R (87 ) 411 . 5018 417 . 7273 423 . 8055 429 . 7295 435 . 4945 441 . 0966 446 . 5307 451 . 7920 456 . 8772 461 . 7776 467 . 4135 471 . 9007 479 . 4789 483 . 4060 487 . 1256 490 . 6345 493 . 9292 497 . 0046 500 . 4012 502 . 9831 505 . 3350 507 . 8499 510 . 0237 511 . 5715 513 . 3291 514 . 2898 515 . 2146 515 . 5752 P( 56 ) P( 49 ) P( 44 ) ( 5, 4 ) Band 410 . 3447 418 . 8196 424 . 6906 - P( 55 ) P( 48 ) P( 43 ) 411 . 5737 420 . 0067 425 . 8458 - - - 3 0 3 Line Observed 3 8 0 2 1 0 0 0 1 2 0 1 1 4 4 0 0 1 3 0 1 1 0 1 1 0 0 3 1 1 1 P(67) P(62) P(57) P(52) P(47) P(42) P(37) P(32) P(27) P(22) P(17) P(12) P(7 ) P(2 ) R ( 4) R ( 9) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 49 ) R ( 54 ) R ( 59 ) R ( 65 ) R ( 70 ) R ( 75 ) R ( 81 ) R ( 88 ) 406 . 0826 412 . 5934 418 . 9637 425 . 1852 431 . 2559 437 . 1695 442 . 9209 448 . 5060 453 . 9197 459 . 1574 464 . 2144 469 . 0865 473 . 7696 478 . 2570 484 . 2074 488 . 2136 492 . 0115 495 . 5977 498 . 9677 502 . 1183 505 . 0460 507 . 7470 510 . 2178 512 . 4554 514 . 4554 516 . 2174 518 . 0104 519 . 2344 520 . 2102 521 . 0496 521 . 5686 0 7 0 1 - 2 - 2 0 0 15 0 0 9 2 - 1 - 7 - 8 - 1 - 1 - 2 - 1 - 3 - 1 - 1 1 0 7 4 24 P(58) P(53) P(48) P(43) P(38) P(33) P(28) P(23) P(18) P(13) P(7 ) P(2 ) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 37 ) R ( 42 ) R ( 47 ) R ( 53 ) R ( 59 ) R ( 64 ) R ( 71 ) R ( 78 ) R ( 83 ) 412 . 7582 418 . 9562 425 . 0025 430 . 8953 436 . 6288 442 . 1971 447 . 5969 452 . 8230 457 . 8706 462 . 7357 468 . 3261 472 . 7737 480 . 2804 484 . 1668 487 . 8446 491 . 3114 494 . 5622 497 . 5931 500 . 9359 503 . 4720 505 . 7777 508 . 2361 510 . 3525 511 . 8518 513 . 5410 514 . 7452 515 . 3077 5 7 - 2 0 4 - 1 0 0 - 2 - 1 - 2 0 - 2 0 - 5 0 2 - 1 - 2 - 2 - 1 0 - 1 0 0 - 6 15 2 6 6 P(54) P(47) P(42) 412 . 7956 421 . 1866 426 . 9959 - - - - - - - d 0 3 6 - 2 0 1 - 1 - 1 - 1 0 - 1 0 7 - 4 - 1 1 0 1 - 2 - 2 - 1 0 - 1 1 - 7 1 - 1 - 1 0 1 18 - - 4 0 2 465 FT IR spectra of L iI Table 2. Continued Line Observed d Line Observed d Line Observed d Line Observed d Line Observed d P( 41 ) P( 36 ) P( 31 ) P( 26 ) P( 20 ) P( 15 ) P( 10 ) P( 5 ) R ( 2) R ( 7) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) R ( 53 ) R ( 58 ) R ( 63 ) R ( 68 ) R ( 76 ) R ( 81 ) 428 . 1381 433 . 7562 439 . 2087 444 . 4917 450 . 6016 455 . 4989 460 . 2055 464 . 7272 471 . 5608 475 . 5714 480 . 1165 483 . 6761 487 . 0237 490 . 1554 493 . 0686 495 . 7582 498 . 2218 500 . 4561 502 . 4578 504 . 2243 505 . 7524 507 . 0388 508 . 5896 509 . 2407 - P(40) P(35) P(30) P(25) P(19) P(14) P(9 ) P(4 ) R ( 3) R ( 8) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 49 ) R ( 54 ) R ( 59 ) R ( 64 ) R ( 70 ) R ( 77 ) 429 . 2751 434 . 8598 440 . 2789 445 . 5277 451 . 5945 456 . 4522 461 . 1230 465 . 6081 472 . 3802 476 . 3472 480 . 8458 484 . 3622 487 . 6673 490 . 7557 493 . 6240 496 . 2691 498 . 6872 500 . 8758 502 . 8302 504 . 5491 506 . 0291 507 . 4854 508 . 7431 1 1 2 0 - 1 0 - 19 - 3 26 - 21 4 - 6 - 2 - 1 - 2 0 0 4 - 1 - 1 0 - 1 41 P( 39 ) P( 34 ) P( 29 ) P( 24 ) P( 18 ) P( 13 ) P( 8 ) P( 3 ) R ( 4) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) R ( 50 ) R ( 55 ) R ( 60 ) R ( 65 ) R ( 71 ) R ( 78 ) 430 . 4049 435 . 9570 441 . 3425 446 . 5566 452 . 5808 457 . 4017 462 . 0368 466 . 4827 473 . 1863 477 . 8810 481 . 5657 485 . 0410 488 . 3025 491 . 3471 494 . 1712 496 . 7709 499 . 1435 501 . 2851 503 . 1935 504 . 8645 506 . 2965 507 . 6939 508 . 8789 - 1 1 0 0 0 - 1 - 1 7 - 17 1 0 2 0 - 1 1 - 1 1 0 3 1 4 - 3 4 P( 38 ) P( 33 ) P( 28 ) P( 23 ) P( 17 ) P( 12 ) P( 7 ) P( 2 ) R (5 ) R (11 ) R (16 ) R (21 ) R (26 ) R (31 ) R (36 ) R (41 ) R (46 ) R (51 ) R (56 ) R (61 ) R (66 ) R (73 ) R (79 ) 431 . 5283 437 . 0476 442 . 3990 447 . 5785 453 . 5595 458 . 3438 462 . 9414 467 . 3478 473 . 9904 478 . 6345 482 . 2781 485 . 7103 488 . 9286 491 . 9296 494 . 7090 497 . 2636 499 . 5885 501 . 6853 503 . 5460 505 . 1699 506 . 5534 508 . 0819 509 . 0082 - P(37) P(32) P(27) P(22) P(16) P(11) P(6 ) R ( 0) R ( 6) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 62 ) R ( 67 ) R ( 75 ) R ( 80 ) 432 . 6455 438 . 1311 443 . 4491 448 . 5931 454 . 5314 459 . 2789 463 . 8383 469 . 8996 474 . 7847 479 . 3796 482 . 9797 486 . 3713 489 . 5465 492 . 5033 495 . 2379 497 . 7473 500 . 0278 502 . 0756 503 . 8907 505 . 4661 506 . 8013 508 . 4302 509 . 1284 0 4 1 - 1 2 6 3 13 - 2 - 2 - 15 0 - 1 - 1 - 3 - 1 - 1 - 9 5 1 2 - 1 7 - 3 1 4 4 1 3 5 2 6 12 11 1 - 6 1 0 1 30 1 0 0 4 2 4 P( 51 ) P( 46 ) P( 41 ) P( 36 ) P( 31 ) P( 25 ) P( 20 ) P( 13 ) P( 8 ) R (3 ) R (9 ) R (15 ) R (20 ) R (25 ) R (30 ) R (35 ) R (40 ) R (46 ) R (51 ) R (56 ) R (61 ) R (67 ) R (77 ) 411 . 5176 417 . 3982 423 . 1258 428 . 6909 434 . 0954 440 . 3580 445 . 3853 452 . 1245 456 . 7157 466 . 9628 471 . 6597 476 . 0638 479 . 5038 482 . 7345 485 . 7505 488 . 5442 491 . 1164 493 . 9055 495 . 9777 497 . 8160 499 . 4193 501 . 0288 502 . 9321 - 1 4 19 - 4 2 4 - 2 2 - 14 5 3 3 - 12 - 1 18 4 - 1 2 7 0 - 2 1 - 40 P(50) P(45) P(40) P(35) P(29) P(24) P(18) P(12) P(7 ) R ( 4) R ( 10 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 47 ) R ( 52 ) R ( 57 ) R ( 62 ) R ( 68 ) R ( 78 ) 412 . 7066 418 . 5552 424 . 2504 429 . 7860 436 . 2099 441 . 3773 447 . 3474 453 . 0575 457 . 6132 467 . 7650 472 . 4144 476 . 7693 480 . 1682 483 . 3552 486 . 3254 489 . 0763 491 . 6058 494 . 3381 496 . 3636 498 . 1561 499 . 7117 501 . 2633 503 . 0729 - P( 44 ) P( 36 ) P( 29 ) P( 23 ) P( 18 ) P( 13 ) R (6 ) R (11 ) R (17 ) R (22 ) R (27 ) R (32 ) R (37 ) R (43 ) R (48 ) 414 . 7756 423 . 6804 431 . 1317 437 . 2558 442 . 1665 446 . 9023 463 . 9647 467 . 7418 472 . 0093 475 . 3311 478 . 4431 481 . 3404 484 . 0190 486 . 9397 489 . 1253 - P(43) P(35) P(28) P(22) P(17) P(12) R ( 7) R ( 12 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 44 ) R ( 49 ) 415 . 9116 424 . 7644 432 . 1693 438 . 2525 443 . 1292 447 . 8257 464 . 7362 468 . 4740 472 . 6875 475 . 9701 479 . 0399 481 . 8939 484 . 5281 487 . 3951 489 . 5347 4 2 0 - 2 3 35 1 2 16 2 - 3 - 1 0 - 2 3 0 - 1 - 2 - 4 - 2 1 - 2 1 34 - 2 1 2 1 - 1 0 2 0 - 2 0 5 - 1 - 4 - 1 - 1 - 2 - 18 - 3 - 4 - 1 - 1 0 1 - ( 6, 5 ) Band P( 54 ) P( 49 ) P( 44 ) P( 39 ) P( 34 ) P( 28 ) P( 23 ) P( 17 ) P( 11 ) P( 6 ) R ( 5) R ( 11 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 48 ) R ( 53 ) R ( 58 ) R ( 63 ) R ( 69 ) 407 . 9176 413 . 8873 419 . 7067 425 . 3702 430 . 8728 437 . 2573 442 . 3903 448 . 3171 453 . 9840 458 . 5034 468 . 5601 473 . 1629 477 . 4659 480 . 8225 483 . 9652 486 . 8933 489 . 5997 492 . 0827 494 . 7617 496 . 7401 498 . 4861 499 . 9944 501 . 4905 P( 47 ) P( 41 ) P( 33 ) P( 26 ) P( 21 ) P( 16 ) P( 10 ) R ( 8) R ( 13 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 40 ) R ( 45 ) 411 . 3343 418 . 1629 426 . 9127 434 . 2247 439 . 2421 444 . 0830 449 . 6542 465 . 5009 469 . 1959 473 . 3606 476 . 6012 479 . 6285 482 . 4385 485 . 5197 487 . 8429 - P(53) P(48) P(43) P(38) P(33) P(27) P(22) P(15) P(10) P(4 ) R ( 6) R ( 12 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 49 ) R ( 54 ) R ( 59 ) R ( 65 ) R ( 75 ) 409 . 1230 415 . 0642 420 . 8543 426 . 4838 431 . 9536 438 . 2977 443 . 3954 450 . 2353 454 . 8995 460 . 2548 469 . 3473 473 . 8991 478 . 1532 481 . 4685 484 . 5692 487 . 4524 490 . 1143 492 . 5520 495 . 1766 497 . 1091 498 . 8066 500 . 5310 502 . 6331 - P(46) P(38) P(32) P(25) P(20) P(15) P(7 ) R ( 9) R ( 14 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 41 ) R ( 46 ) 412 . 4873 421 . 4914 427 . 9775 435 . 2412 440 . 2241 445 . 0300 452 . 3369 466 . 2561 469 . 9117 474 . 0256 477 . 2238 480 . 2078 482 . 9780 486 . 0022 488 . 2814 4 6 2 0 1 1 5 1 2 17 0 26 6 0 - 12 0 - 1 2 0 - 5 3 1 24 8 7 - 15 - 7 - 6 - 12 - 14 - 5 - 18 - 16 - 13 - 9 - 12 - 14 3 - 8 3 21 1 0 2 - 1 1 - 29 - 10 2 6 - 4 1 0 1 - 1 1 6 7 1 2 3 P( 52 ) P( 47 ) P( 42 ) P( 37 ) P( 32 ) P( 26 ) P( 21 ) P( 14 ) P( 9 ) R ( 2) R ( 8) R ( 13 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 50 ) R ( 55 ) R ( 60 ) R ( 66 ) R ( 76 ) - 12 19 12 15 11 10 47 - 8 - 7 - 16 - 12 - 11 25 - 12 16 P( 45 ) P( 37 ) P( 30 ) P( 24 ) P( 19 ) P( 14 ) R ( 5) R ( 10 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 42 ) R ( 47 ) 410 . 3234 416 . 2339 421 . 9916 427 . 5912 433 . 0278 439 . 3313 444 . 3945 451 . 1836 455 . 8141 466 . 1526 470 . 8978 474 . 6285 478 . 8329 482 . 1059 485 . 1634 488 . 0026 490 . 6230 493 . 0122 495 . 5811 497 . 4670 499 . 1181 500 . 7847 502 . 7897 ( 7, 6 ) Band 413 . 6351 422 . 5905 430 . 0877 436 . 2528 441 . 1989 445 . 9711 463 . 1858 467 . 0032 471 . 3159 474 . 6809 477 . 8386 480 . 7783 483 . 5010 486 . 4755 488 . 7063 8 1 - 2 - 3 - 17 5 - 10 - 10 - 14 - 27 - 5 - 14 - 13 - 13 - 15 15 8 7 9 - 24 - 5 - 17 - 18 20 - 6 - 14 - 15 - 14 - 14 - 13 - 8 2 2 7 0 1 4 - 2 0 - 2 5 7 3 4 0 0 18 0 2 4 1 0 0 - - 5 9 9 7 - 10 - 20 - 17 - 7 - 14 - 13 - 14 - 13 - 14 - 13 - 16 (continued ) 466 B. Guo et al. Table 2. Line Observed Line Observed R ( 51 ) R ( 56 ) R ( 61 ) R ( 67 ) 490 . 3270 492 . 1443 493 . 7278 495 . 3153 11 12 13 15 R ( 52 ) R ( 57 ) R ( 62 ) R ( 68 ) 490 . 7087 492 . 4799 494 . 0160 495 . 5470 - P( 41 ) P( 24 ) P( 17 ) R ( 13 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 42 ) R ( 48 ) R ( 56 ) R ( 61 ) R ( 66 ) R ( 72 ) 413 . 2563 431 . 1837 437 . 9979 463 . 8246 469 . 2565 472 . 3785 475 . 2918 477 . 9860 480 . 9293 483 . 5504 486 . 5334 488 . 0983 489 . 4275 490 . 7087 6 1 6 7 - 3 - 24 - 3 - 7 - 4 - 1 - 10 - 1 1 0 P(37) P(23) P(16) R ( 15 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 43 ) R ( 51 ) R ( 57 ) R ( 62 ) R ( 68 ) P( 65 ) P( 51 ) P( 45 ) P( 40 ) P( 33 ) P( 27 ) P( 22 ) P( 15 ) R ( 9) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) 887 . 4996 911 . 9464 921 . 5836 929 . 2185 939 . 2976 947 . 3498 953 . 6508 961 . 8106 984 . 6506 989 . 2287 991 . 9935 994 . 3362 996 . 2560 997 . 7472 998 . 8104 999 . 4415 - P( 62 ) P( 55 ) P( 49 ) P( 43 ) P( 38 ) P( 33 ) P( 28 ) P( 23 ) P( 18 ) P( 13 ) P( 5 ) R ( 9) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) R ( 49 ) 882 . 5135 894 . 6821 904 . 5730 913 . 9593 921 . 3933 928 . 4506 935 . 1421 941 . 4603 947 . 4035 952 . 9507 961 . 0162 973 . 4051 976 . 7225 979 . 6261 982 . 1115 984 . 1780 985 . 8190 987 . 0386 987 . 8257 988 . 1861 P( 63 ) P( 52 ) P( 45 ) P( 40 ) P( 34 ) P( 29 ) P( 24 ) 870 . 3989 889 . 2069 900 . 3082 907 . 8110 916 . 3454 923 . 0564 929 . 3926 Continued Line Observed 15 11 15 10 R ( 53 ) R ( 58 ) R ( 63 ) R ( 73 ) 491 . 0816 492 . 8062 494 . 2952 496 . 5586 417 . 6442 432 . 1795 438 . 9421 465 . 2308 469 . 8979 472 . 9789 475 . 8479 478 . 4986 481 . 3882 484 . 7379 486 . 8655 488 . 3817 489 . 8936 1 12 - 17 - 8 - 6 - 15 - 6 - 7 - 9 - 4 - 4 - 13 9 P( 36 ) P( 21 ) P( 15 ) R ( 16 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 44 ) R ( 52 ) R ( 58 ) R ( 63 ) R ( 69 ) ( 8, 7 ) Band 418 . 7251 434 . 1447 439 . 8840 465 . 9234 470 . 5315 473 . 5741 476 . 3966 479 . 0027 481 . 8364 485 . 1156 487 . 1863 488 . 6573 490 . 1126 P(62) P(50) P(44) P(39) P(32) P(26) P(21) P(12) R ( 11 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) 892 . 9639 913 . 5860 923 . 1389 930 . 7021 940 . 6748 948 . 6407 954 . 8628 965 . 0932 986 . 0456 989 . 8153 992 . 4997 994 . 7531 996 . 5904 997 . 9980 998 . 9725 999 . 5145 - 17 - 2 9 4 2 2 16 80 - 9 6 44 - 12 18 29 17 14 P( 57 ) P( 49 ) P( 43 ) P( 38 ) P( 30 ) P( 25 ) P( 19 ) P( 11 ) R ( 12 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) 5 7 - 3 5 75 22 7 9 61 3 - 68 - 20 4 18 15 20 - 2 23 8 37 P(61) P(53) P(48) P(42) P(37) P(32) P(27) P(22) P(17) P(12) R ( 3) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) 884 . 2949 898 . 0353 906 . 1744 915 . 4738 922 . 8283 929 . 8178 936 . 4344 942 . 6786 948 . 5392 954 . 0077 968 . 8921 974 . 1043 977 . 3378 980 . 1574 982 . 5589 984 . 5404 986 . 0971 987 . 2289 987 . 9322 19 9 13 7 7 10 - 8 11 2 - 67 27 13 20 25 20 18 4 5 12 P( 58 ) P( 52 ) P( 46 ) P( 41 ) P( 36 ) P( 31 ) P( 26 ) P( 21 ) P( 16 ) P( 11 ) R ( 5) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) 2 11 7 28 14 6 11 P(59) P(50) P(44) P(39) P(33) P(28) P(23) 877 . 4289 892 . 4471 901 . 8416 909 . 2732 917 . 7164 924 . 3570 930 . 6163 18 - 4 44 10 - 17 38 0 P( 56 ) P( 48 ) P( 43 ) P( 37 ) P( 32 ) P( 27 ) P( 22 ) d - 25 19 18 4 31 - 8 31 - 69 - 70 4 7 - 2 1 - 9 1 20 - - d Line Observed 13 10 12 - 8 R (54 ) R (59 ) R (65 ) R (75 ) 491 . 4458 493 . 1225 494 . 8244 496 . 8949 1 16 20 3 - 3 29 5 - 5 - 29 - 4 - 16 - 10 15 P( 31 ) P( 20 ) P( 14 ) R (18 ) R (24 ) R (29 ) R (34 ) R (40 ) R (46 ) R (53 ) R (59 ) R (64 ) R (70 ) 424 . 0318 435 . 1216 440 . 8130 467 . 2810 471 . 1562 474 . 1533 476 . 9342 479 . 9839 482 . 7126 485 . 4837 487 . 5006 488 . 9268 490 . 3209 ( 2, 0 ) Band 901 . 8008 915 . 2147 924 . 6794 932 . 1704 943 . 3911 949 . 9176 957 . 2425 966 . 1426 986 . 7172 990 . 3859 992 . 9800 995 . 1554 996 . 9061 998 . 2240 999 . 1118 999 . 5702 11 9 - 3 - 3 9 24 5 - 4 12 15 - 9 1 18 - 7 - 22 7 P( 56 ) P( 48 ) P( 42 ) P( 37 ) P( 29 ) P( 24 ) P( 18 ) P( 8 ) R (13 ) R (19 ) R (24 ) R (29 ) R (34 ) R (39 ) R (44 ) R (49 ) 903 . 5280 916 . 8269 926 . 2085 933 . 6280 944 . 7268 951 . 1761 958 . 4110 969 . 2255 987 . 3713 990 . 9372 993 . 4503 995 . 5395 997 . 2027 998 . 4380 999 . 2394 999 . 6129 ( 3, 1 ) Band 889 . 5500 899 . 6902 909 . 3325 916 . 9733 924 . 2558 931 . 1757 937 . 7147 943 . 8794 949 . 6663 955 . 0641 970 . 4632 974 . 7844 977 . 9331 980 . 6682 982 . 9875 984 . 8844 986 . 3568 987 . 4043 988 . 0185 15 1 25 3 9 44 8 - 10 12 13 29 19 3 - 6 5 2 - 5 10 - 12 P( 57 ) P( 51 ) P( 45 ) P( 40 ) P( 35 ) P( 30 ) P( 25 ) P( 20 ) P( 15 ) P( 10 ) R (7 ) R (12 ) R (17 ) R (22 ) R (27 ) R (32 ) R (37 ) R (42 ) R (47 ) 891 . 2750 901 . 3291 910 . 8890 918 . 4573 925 . 6684 932 . 5107 938 . 9768 945 . 0689 950 . 7774 956 . 0960 971 . 9683 975 . 4470 978 . 5134 981 . 1661 983 . 4017 985 . 2137 986 . 6005 987 . 5629 988 . 0918 - P( 54 ) P( 47 ) P( 42 ) P( 36 ) P( 31 ) P( 26 ) P( 21 ) 885 . 9095 897 . 2045 904 . 8559 913 . 5622 920 . 4156 926 . 9033 933 . 0183 ( 4, 2 ) Band 882 . 5559 895 . 6340 903 . 3537 912 . 1459 919 . 0731 925 . 6367 931 . 8241 d - - - 10 5 9 3 15 9 3 Line Observed 7 14 13 13 R ( 55 ) R ( 60 ) R ( 66 ) 491 . 7993 493 . 4300 495 . 0747 - - 6 17 0 - 6 - 5 - 1 - 9 - 3 - 4 - 7 - 1 27 10 P(30) P(19) R ( 12 ) R ( 19 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 41 ) R ( 47 ) R ( 55 ) R ( 60 ) R ( 65 ) R ( 71 ) 425 . 0746 436 . 0862 463 . 1098 467 . 9479 471 . 7722 474 . 7265 477 . 4642 480 . 4602 483 . 1360 486 . 1938 487 . 8038 489 . 1798 490 . 5157 4 4 19 - 4 - 8 - 6 - 11 - 12 - 2 1 - 4 - 7 - 34 27 3 14 30 14 14 18 40 22 - 1 7 3 0 9 - 4 47 P(52) P(47) P(41) P(35) P(28) P(23) P(16) P(5 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) 910 . 2881 918 . 4256 927 . 7225 936 . 4912 946 . 0468 952 . 4198 960 . 6979 972 . 1646 988 . 6272 991 . 4745 993 . 9033 995 . 9063 997 . 4851 998 . 6336 999 . 3509 18 27 18 - 11 10 18 - 7 8 17 5 20 15 2 1 15 9 - 2 19 5 P(56) P(50) P(44) P(39) P(34) P(29) P(24) P(19) P(14) P(9 ) R ( 8) R ( 13 ) R ( 18 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) 892 . 9894 902 . 9594 912 . 4290 919 . 9282 927 . 0654 933 . 8334 940 . 2279 946 . 2426 951 . 8726 957 . 1146 972 . 6957 976 . 0935 979 . 0786 981 . 6466 983 . 7970 985 . 5243 986 . 8287 987 . 7018 988 . 1455 8 11 18 16 - 9 - 1 21 P(53) P(46) P(41) P(35) P(30) P(25) P(20) 887 . 5640 898 . 7650 906 . 3422 914 . 9625 921 . 7440 928 . 1556 934 . 1916 d - - - - - d 14 13 14 - - 5 7 26 18 12 9 9 74 20 10 18 3 11 13 25 53 2 - 12 - 12 0 8 19 22 17 20 8 14 14 2 4 - 2 16 2 0 - - 1 14 10 15 4 - 4 - 18 467 FT IR spectra of L iI Table 2. Line Observed P( 19 ) P( 11 ) R ( 5) R ( 10 ) R ( 15 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) 935 . 3523 944 . 0980 959 . 3582 962 . 9700 966 . 1649 968 . 9555 971 . 3321 973 . 2896 974 . 8294 975 . 9474 976 . 6357 P( 48 ) P( 43 ) P( 38 ) P( 33 ) P( 28 ) P( 23 ) P( 18 ) P( 13 ) R ( 13 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 40 ) R ( 46 ) P( 60 ) P( 43 ) P( 37 ) P( 31 ) P( 24 ) P( 16 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) a Continued d Line Observed d Line Observed - 32 18 19 59 - 1 2 5 - 11 3 29 19 P(17) P(9 ) R ( 6) R ( 11 ) R ( 16 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) 937 . 6350 946 . 1316 960 . 1121 963 . 6332 966 . 7561 969 . 4651 971 . 7562 973 . 6310 975 . 0872 976 . 1187 976 . 7225 13 5 18 - 37 0 12 - 8 - 11 10 22 22 P( 16 ) P( 8 ) R ( 7) R ( 12 ) R ( 17 ) R ( 22 ) R ( 27 ) R ( 32 ) R ( 37 ) R ( 42 ) R ( 47 ) 938 . 7503 947 . 1205 960 . 8473 964 . 2989 967 . 3308 969 . 9558 972 . 1646 973 . 9581 975 . 3275 976 . 2745 986 . 7929 885 . 2063 892 . 8587 900 . 1615 907 . 1018 913 . 6804 919 . 8879 925 . 7187 931 . 1747 953 . 8961 957 . 3552 959 . 7880 961 . 8106 963 . 4112 964 . 7736 965 . 5376 - 10 18 9 - 4 6 - 4 - 38 - 30 33 12 7 37 13 - 57 - 24 P(47) P(42) P(37) P(32) P(27) P(22) P(17) R (5 ) R ( 14 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 41 ) R ( 47 ) 886 . 7636 894 . 3480 901 . 5774 908 . 4457 914 . 9483 921 . 0836 926 . 8419 948 . 3744 954 . 5141 957 . 8751 960 . 2240 962 . 1615 963 . 6801 964 . 9502 965 . 6037 - 23 - 9 - 4 - 14 - 30 - 16 - 22 52 36 15 - 4 5 - 1 17 - 36 P( 46 ) P( 41 ) P( 36 ) P( 31 ) P( 26 ) P( 21 ) P( 16 ) R ( 8) R ( 15 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 43 ) R ( 48 ) 855 . 2885 882 . 4772 891 . 1238 899 . 2524 908 . 0723 917 . 2661 946 . 3932 948 . 8010 950 . 7981 952 . 3844 953 . 5496 954 . 3026 - P(58) P(42) P(35) P(30) P(23) R ( 13 ) R ( 20 ) R ( 25 ) R ( 30 ) R ( 35 ) R ( 40 ) R ( 45 ) 858 . 6927 883 . 9591 893 . 8905 900 . 5554 909 . 2732 942 . 9669 946 . 9076 949 . 2358 951 . 1492 952 . 6494 953 . 7365 954 . 3925 16 26 4 - 2 - 11 - 12 - 7 18 8 8 47 - 29 P( 51 ) P( 41 ) P( 34 ) P( 29 ) P( 22 ) R ( 14 ) R ( 21 ) R ( 26 ) R ( 31 ) R ( 36 ) R ( 41 ) R ( 46 ) 10 36 8 9 - 7 9 - 10 - 6 - 4 26 10 62 ( 5, 3 ) Band 888 . 3049 895 . 8232 902 . 9807 909 . 7780 916 . 2098 922 . 2702 927 . 9509 950 . 5643 955 . 1114 958 . 3759 960 . 6450 962 . 4991 963 . 9331 963 . 2375 965 . 6549 ( 6, 4 ) Band 870 . 1773 885 . 4205 895 . 2510 901 . 8416 910 . 4582 943 . 5797 947 . 4035 949 . 6500 951 . 4767 952 . 8999 953 . 8961 954 . 4787 Line Observed 4 29 - 7 53 2 1 - 9 14 13 30 32 P( 15 ) P( 7 ) R (8 ) R (13 ) R (18 ) R (23 ) R (28 ) R (33 ) R (38 ) R (43 ) 939 . 8534 948 . 0990 961 . 5692 964 . 9326 967 . 8879 970 . 4320 972 . 5575 974 . 2629 975 . 5509 986 . 4120 57 0 1 7 20 30 5 28 - 3 - 8 1 8 - 7 15 - 26 P( 45 ) P( 40 ) P( 35 ) P( 30 ) P( 25 ) P( 20 ) P( 15 ) R (10 ) R (16 ) R (22 ) R (27 ) R (32 ) R (37 ) R (44 ) 889 . 8403 897 . 2855 904 . 3760 911 . 0937 917 . 4505 923 . 4326 929 . 0408 951 . 9410 955 . 6954 958 . 8634 961 . 0508 962 . 8195 964 . 1714 965 . 3556 21 24 11 36 25 2 27 2 50 12 21 12 P( 50 ) P( 39 ) P( 33 ) P( 28 ) P( 19 ) R (15 ) R (22 ) R (27 ) R (32 ) R (37 ) R (42 ) R (47 ) 871 . 7609 888 . 3049 896 . 5938 903 . 1189 913 . 9338 944 . 1761 947 . 8894 950 . 0485 951 . 7987 953 . 1324 954 . 0475 954 . 5450 d - - - d Line Observed d 27 10 - 4 - 11 - 9 10 2 - 15 16 26 P(14) R ( 3) R ( 9) R ( 14 ) R ( 19 ) R ( 24 ) R ( 29 ) R ( 34 ) R ( 39 ) R ( 44 ) 940 . 9354 957 . 8018 962 . 2734 965 . 5605 968 . 4304 970 . 8906 972 . 9314 974 . 5545 975 . 7582 976 . 5337 - 8 17 - 16 29 1 9 - 9 - 7 28 35 - P(44) P(39) P(34) P(29) P(24) P(19) P(14) R ( 11 ) R ( 17 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 45 ) 891 . 3533 898 . 7302 905 . 7446 912 . 3931 918 . 6770 924 . 5858 930 . 1156 952 . 6064 956 . 2650 959 . 3351 961 . 4362 963 . 1245 964 . 3902 965 . 4490 - P(46) P(38) P(32) P(27) P(18) R ( 16 ) R ( 23 ) R ( 28 ) R ( 33 ) R ( 38 ) R ( 43 ) R ( 48 ) 877 . 9748 889 . 7195 897 . 9343 904 . 3760 915 . 0588 944 . 7579 948 . 3539 950 . 4332 952 . 0978 953 . 3512 954 . 1836 954 . 5904 48 15 15 - 44 17 39 10 10 - 6 24 31 - 7 - 10 22 71 9 10 - 15 - 6 - 14 - 14 0 19 6 9 12 - 7 60 - 59 - 12 32 12 17 - 8 4 3 - 2 22 47 10 17 - 6 6 - 1 - 16 - 24 - 7 15 0 17 - 1 - 67 Observed± calculated di erences ( columns labelled d ) are in units of 0 . 0001 cm - 1 . Table 3. Mass-dependent Dunham constants ( in cm 6 Y 10 Y 20 10 2 Y 30 5 10 Y 40 Y 01 3 10 Y 11 10 5 Y 21 8 10 Y 31 10 6 Y 02 9 10 Y 12 11 10 Y 22 12 10 Y 03 10 14 Y 13 LiI 534 . 586 010( 165 ) - 3 . 303 512( 109 ) 1 . 248 72(284 ) - 2 . 911( 251 ) 0 . 513 057 887(313 ) - 5 . 090 024( 102 ) 2 . 005 65(312 ) - 1 . 699( 330 ) - 1 . 891 104( 186 ) 8 . 548 0(234 ) 4 . 489( 433 ) 2 . 051 3(380 ) 7 -1 ). LiI 496 . 848 333( 62 ) - 2 . 853 706 3( 265 ) 1 . 006 418( 458 ) - 2 . 488 6(275) 0 . 443 175 934(334 ) - 4 . 086 252 0( 422 ) 1 . 499 781( 681 ) - 1 . 383 5(469) - 1 . 410 476( 135 ) 5 . 844 5(123 ) 2 . 514 4(684 ) 1 . 221 6(162 ) 1 . 492( 138 ) The ® nal term in equation (5 ) is a correctio n term for the Li nucleus which takes into account the Born± Oppenheimer breakdown and hom ogeneo us non-adiabatic mixing from distant S electronic states, and is represen ted by the power series expansion U Li ( R ) = å Li ui ( R - Re ) i ( 10 ) i= 1 Similarly, e ects from the rotational motion, namely Jdependent Born± Oppenheimer break down and heterogeneous non-adiabatic mixing from distant P electronic states, are accounted for by the q ( R ) term in equation (3 ) , where 468 B. Guo et al. Figure 2. The parameterized Born± Oppenheimer potential of LiI plotted using the parameters obtained by ® tting the experimental data: solid line, this work; dashed line, reference [9]. Table 4. U10 U20 U30 3 10 U40 U01 2 10 U11 10 4 U21 6 10 U31 5 10 U02 7 10 U12 9 10 U22 10 10 U32 D D D D D Li 10 Li 01 Li 11 Li 02 Li 03 Mass-independent Dunham constants (in cm 1281 . 100 71( 39 ) - 18. 972 779(150) 0. 172 534 8(703 ) - 1. 100 9( 114 ) 2. 946 333 19( 853 ) - 7. 004 429 (125) 6. 618 50( 229 ) - 1. 254 7( 611 ) - 6. 233 601 31 6. 625 218 29 9. 367 163 45 - 4. 593 862 55 0. 013 65( 349 ) 0. 417 4( 340 ) 0. 638( 197 ) 4. 145( 502 ) 377 . 5( 536 ) q( R ) = 1 M Li å 10 10 U03 11 10 Y 13 13 10 U23 15 10 U04 17 10 U14 17 10 U24 10 19 U05 22 10 U15 24 10 U06 25 10 U16 29 10 U07 33 10 U08 qLi i ( R - - 1 ). 3 . 655 535 95 1 . 250 763 30 4 . 870 216 02 5 . 617 536 79 9 . 667 560 20 1 . 836 821 53 1 . 633 533 43 1 . 956 016 80 1 . 835 139 20 5 . 813 369 17 5 . 407 320 41 3 . 018 234 98 Table 5. Derived parameter values f or the modi® ed Morse potential. D e cm  Re A b 0 b 1 b 2 b 3 b 4 b 5 -1 Li -1 -1 u 1 cm u AÊ Li -1 Ê -2 u 2 cm u A Li -1 -3 u 3 cm u AÊ Li 1 q 1 u AÊ Ê -2 q Li 2 uA 6 M ( Li ) u 7 ( M Li ) u 127 M ( I) u - Re ) . i ( 11 ) i= 1 Our ® tting procedure is similar to the method reported by Coxon and Hajigeorgiou [9, 15] and is described in greater detail elsewhere [10]. R esults of the potential ® t are given in table 5, where the value of D e was ® xed to that given in Huber and Herzberg [16] and the atom ic masses were taken from Mills et al. [17]. In ® gure 2, 288 39.0 2 . 391 981 00(338 ) 3 . 394 922 75(595 ) 2 . 086 096 6(992 ) 2 . 919 149(628 ) 9 . 036 44( 578 ) 7 . 7780( 470 ) 26 . 707(450 ) 13 . 63( 107 ) - 21 . 31( 178 ) 10 . 75( 126 ) - 0 . 000 264 5(625) 0 . 000 573 3(956 ) 6 . 015 121 4 7 . 016 003 0 126 . 904 473 we plot the potential using equation (6 ) and the Born± Oppenheimer parameters in table 5, and compare it with the potential reported by Coxon and Hajigeorgiou [9]. 4. Conclusion Fourier transf orm infrared emission spectroscopy is a very powerful technique for the study of alkali halide molecules. Our new infrared vibration± rotation data for the two isotopomers, 7 LiI and 6 LiI, were used to derive a FT IR spectra of L iI set of improved spectroscopic constants as well as the parameters for a modi® ed Morse potential for the ground state. The authors thank the Natural Sciences and Engineering R esearch Council of Canada (NSER C ) for support. References [1] H onig , A ., M andel , M ., Stitch, M . L., and Townes, C. H ., 1954, Phys. Rev., 96, 629. [2] R usk , J. L., and G ordy, W ., 1962, Phys. Rev., 127, 817. [3] B reivogel , F. W ., J r ., H ebert, A . J., and Street, K ., J r ., 1965, J. chem . Phys., 42, 1555. [4] J acobson, A . R ., and R amsey, N ., 1976, J. chem . Phys., 65, 1211. [5] S chaefer , S. H ., B ender , D ., and Tiemann, E., 1986, Chem . Phys., 102, 165. [6] ( a) B erry, R . S., and (b ) D yke, T. R ., 1979, Alkali Halide V apors, edited by P. Davidovits and D. L. McFadden (New Y ork: A cadem ic Press ) 469 [7] K lemperer , W . A ., N orris, W . G ., B uchler , A ., and E mslie, A . G ., 1960, J. chem . Phys., 33, 1534. [8] Thompson, G., M aki, A . G ., and W eber, A ., 1986, J. m olec. S pectrosc., 118, 540 [9] C oxon, J. A ., and H ajigeorgiou , P. G . , 1992, Chem . Phys., 167, 327. [10] H edderich, H . G ., D ulick, M ., and B ernath, P. F., 1993, J. chem . Phys., 99, 8363. [11] M untianu , A ., G uo, B., and B ernath, P. F., 1996, J. m olec. S pectrosc., 176, 274. [12] G uelachvili, G ., and R ao, K . N ., 1986, Handbook of Inf rared Standards ( Orlando, FL: A cadem ic Press ) . [13] P etersen, F. R ., B eaty, E. C., and P ollock , C. R ., 1983, J. m olec. Spectrosc., 102, 112. [14] D unham, J. L., 1932, Phys. Rev, 41, 721. [15] C oxon, J. A ., and H ajigeorgiou , P. G ., 1992, Can. J. Phys., 70, 40. [16] H uber, K . P., and H erz berg , G ., 1979, Constants of D iatom ic Molecules ( New Y ork: Van NostrandR einhold ) . [17] M ills, I., et al., 1989, IUPAC Q uantities, Units and S ym bols in Physical Chem istry ( Oxf ord: Blackwell) .
© Copyright 2026 Paperzz