High resolution Fourier transform infrared emission spectra of lithium

M OLECUL A R PH Y SICS , 1997, V OL. 91, N O. 3, 459 ± 469
High resolution Fourier transform infrared emission spectra of
lithium iodide
By B. GUO, M. DULICK, S. Y OST and P. F. BER NA TH
Centre for M olecular Beams and Laser Chemistry, Departm ent of Chemistry,
University of Waterloo, W aterloo, Ontario, Canada N2L 3G1
(Received 27 Novem ber 1996; accepted 27 Novem ber 1996 )
The high resolution inf rared emission spectrum of lithium iodide has been recorded with a
7
Fourier transf orm spectrometer. A total of 1024 transmissions with D v = 1 for LiI (f rom
v= 1 ®
0 to v = 8 ®
7 ) , 387 transitions with D v = 2 ( v = 2 ®
0 to v = 6 ®
4 ) and 504
6
transitions with D v = 1 for LiI ( v = 1 ®
0 to v = 5 ®
4 ) have been assigned. The infrared
data have been used to determine improved mass-dependent Dunham Y lm coe cients f or the
1 +
ground X S
electronic state. The mass-independent Dunham Ulm coe cients were obtained
along with Born± Oppenheimer breakdown constants. Finally, all of the data were ® tted to the
eigenvalues of the radial SchroÈ dinger equation containing a modi® ed Morse potential f unction
to determine the parameters of an e€ ective ground state potential.
1.
Introduction
A s classical examples of ionic bonding, the alkali
halides have been studied extensively in the past. The
microwave absorption spectra of LiI and several other
alkali halides were observed by Honig et al. [1] in 1954
when they reported values for the rotational constants
of 7 LiI and 6LiI, the electric quadrupole coupling constants for 127I and the electric dipole moment for 7 LiI. In
1962, R usk and Gordy [2] reported on millimetre wave
spectra. Breivogel et al. [3] studied radiofrequency and
microwave spectra of 6 LiI using the molecular beam
electric-resonance method, and measured the electric
dipole moment for 6LiI. Jacob son and R amsey [4]
studied the hyper® ne structure of 7 LiI in a molecular
beam and reported spin± rotation constants for both
iodide and lithium, and also nuclear spin± spin coupling
constants. High resolution laser excitation and ¯ uores1
cence spectra of the A 0 + - X S + electronic transition
were measured by Schaefer and coworkers [5]. A n overview of the earlier literature of LiI was provided by
Berry [6a] and Dyke [6b] in 1979.
In the infrared region, some LiI bandheads were
measured by Klemperer et al. [7] and estimates of the
vibrational constants were made. The high resolution
infrared spectrum of the D v = 2 transitions of 7LiI
was recorded by Thompson et al. [8] using a diode
laser, and a total of 109 transitions was reported . The
microwave and infrared diode laser data were used by
Coxon and Hajigeorgiou [9] to determ ine an e€ ective
potential energy curve for the ground states of 7 LiI.
However, this analysis was limited by the small
0026± 8976/97 $12 . 00
Ñ
number of overtone transitions available and the lack
of infrared data for the minor 6LiI isotopomer.
W e report here our high resolu tion infrared emission
spectrum of LiI recorded with a Bruker Fourier transform spectrom eter. The infrared data were used to
determ ine improved mass-dependent Dunham Ulm con1
stants for the ground X S + electronic state. The massindependent Dunham Ulm constants also were obtained
along with Born± Oppenheimer breakdown constants.
Finally, all of the data were ® tted using the eigenvalues
of the radial SchroÈ dinger equation containing a modi® ed Morse potential function to determ ine an e€ ective
ground state potential.
2.
Experimental details
The high resolution infrared emission spectrum of
lithium iodide was recorded with the Bruker IFS 120
HR Fourier transf orm spectrom eter at the University
of Waterloo. The D v = 1 vibrational bands were
recorded with a liquid helium cooled Si:B detector and
1
a KBr beamsplitter at a resolution of 0 . 005 cm - . The
-1
spectral bandpass was limited to ~ 400 - 760 cm
by a
cold ® lter for the upper wavenum ber limit and by the
beamsplitter cuto€ for the lower limit. The D v = 2
vibrational bands were obtained with the same setup
except that a bandpass ® lter was used which limited
1
the spectra to the range 750- 1250 cm - and the resolu1
tion was 0 . 01 cm .
The experimental setup was similar to that described
earlier [10, 11]. Gas-phase lithium iodide molecules were
produced in a tube furnace by gradually heating up
1997 T aylor & Francis Ltd.
460
B. Guo et al.
6 0 . 0005 cm - 1 for most of the strong and unblended
lines. However, many of the weaker lines and the
blended features were determ ined only to a lesser preci1
sion of about 6 0 . 001 cm - .
The vibrational bands LiI were identi® ed and sorted
using an interactive colour Loomis± Wood program. The
rotational assignments were made by predicting the
vibration± rotation line positions using the previous
rotational and vibrational constants [3]. In total, 1915
vibration± rotational transitions were assigned to the
two isotopomers and the transitions are listed in tables
1 ( 6 LiI) and 2 ( 7LiI) .
Figure 1. A n overview of the D v = 1 vibrational bands of
LiI. The strong headband is the v = 1 ®
0 f undam ental
7
of LiI.
lithium metal chips while I 2 vapour ¯ owed into the
system . The lithium metal pieces were contained in a
carbon boat lying in the central part of a 1 . 2 m long
and 5 cm diameter mullite tube which was sealed with
a KBr window at each end. The tube was heated by a
commercial furnace. The ends of the mullite tube were
water cooled in order to prevent condensation on the
windows. A fter the sample was loaded, the mullite tube
was pum ped and heated to about 150 ë C overnight in
order to remove residual water from inside the tube.
A bout 10 Torr of argon gas was introduced into the
tube before the tem perature was increased. The
1
400 - 750 cm - spectral region was monitored as the temperature was increased. W hen the temperature reached
about 640 ë C, emission from LiI was noted. The temperature was then increased to 710ë C, and the spectrum
was taken with the coaddition of 100 scans. Figure 1
shows an overview of the fundamental and related hot
bands of lithium iodide. The D v = 2 bands were
reco rded at the same temperature with 60 scans coadded.
3.
Results and discussion
The program `PC-D ecomp’ , developed by J. W.
Brault, was used for the spectral line measurem ent.
Using this program, the spectral line pro® les were
® tted using Voigt lineshape functions. The signal to
noise ratio was as high as 30 : 1 for the unblended
lines. Even with an abundance of 7 . 3% , 6LiI yielded a
good em ission spectrum . The D v = 2 bands, however,
are much weaker and share the same spectral region as
the much stronger CO2 emission bands. The strong CO2
lines were present also in the D v = 1 band region, presumably as an impurity from the carbon liner. The measured spectral lines were calibrated with CO2 line
positions taken from the literature [12, 13]. The precision of the line position measurem ent is better than
3.1. D unham m odel
The line positions of each isotopomer were ® tted to
the Dunham energy level expression [14]
å,
F ( v, J ) =
Y lm ( v +
) [J ( J + 1 ) ]m .
( 1)
1 l
2
lm
The pure rotational transitions [1± 3] were included in
the ® t after correctio n for the e€ ects of electric ® elds
and hyper® ne structure. The Dunham constants are
listed in table 3 for each isotopomer, and depend on
the isotopic masses, varying approximately with
i
powers of the reduced mass ratio ¹ / ¹ ,
Y
i
lm
= Y lm
()
¹
¹
( 2l + m )
i
( 2)
,
where the i designates an isotopic species. A ll of the
assigned infrared vibration± rotation transitions were
® tted also to the mass-independent Dunham expression:
F ( v, J ) =
å,
lm
¹
- ( 2l + m )
(
Ulm 1 +
me
D
M Li
´ ( v + 12) l [J ( J + 1 ) ]m ,
Li
lm
)
( 3)
where m e is the electron mass, M Li is the Li atomic mass,
and the D lm are Born± Oppenheimer breakdown constants. Since only one naturally occurring isotope of
iodine exists, all information on Born± Oppenheimer
breakdown is con® ned to the lithium atom. Finally, a
set of `constrained’ Ulm values was obtained from a ® t
where all Ulm for m < 1 were treated as independent
param eters while all rem aining U lm were ® xed to
values determ ined from the constraint relations implicit
in the Dunham model [10, 14]. The `constrained’ massindependent Dunham coe cients and Born± Oppenheim er breakdo wn constants are listed in table 4.
3.2. Param eterized potential m odel
In order to estimate energies of high lying vibration±
rotational levels of the ground state, a reliable internuclear potential energy function is required. Such a
461
FT IR spectra of L iI
Table 1.
6
LiI infrared transitions (in cm
Line
Observed
d
Line
Observed
d
Line
Observed
P( 65 )
P( 57 )
P( 52 )
P( 47 )
P( 42 )
P( 37 )
P( 32 )
P( 27 )
P( 20 )
P( 14 )
P( 9 )
P( 3 )
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 62 )
R ( 67 )
R ( 74 )
442 . 8520
455 . 1791
462 . 6496
469 . 9347
477 . 0234
483 . 9115
490 . 5921
497 . 0589
505 . 7414
512 . 8271
518 . 4714
524 . 9261
535 . 8210
540 . 3580
544 . 6278
548 . 6266
552 . 3480
555 . 7870
558 . 9404
561 . 8020
564 . 3682
566 . 6327
568 . 5953
570 . 2488
571 . 5902
572 . 9419
-
5
1
7
9
4
2
0
- 1
1
3
- 6
0
8
6
- 1
0
0
- 7
- 2
- 1
3
- 8
2
2
- 2
34
P(64)
P(56)
P(51)
P(46)
P(41)
P(36)
P(31)
P(25)
P(19)
P(13)
P(7 )
R ( 3)
R ( 8)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
R ( 53 )
R ( 58 )
R ( 63 )
R ( 68 )
R ( 75 )
444 . 4169
456 . 6883
464 . 1222
471 . 3675
478 . 4170
485 . 2642
491 . 9029
499 . 5885
506 . 9454
513 . 9749
520 . 6633
532 . 0019
536 . 7489
541 . 2330
545 . 4496
549 . 3929
553 . 0586
556 . 4413
559 . 5362
562 . 3385
564 . 8455
567 . 0509
568 . 9507
570 . 5416
571 . 8213
573 . 0783
-
8
2
0
1
0
- 1
1
41
0
0
7
- 1
2
0
0
- 3
- 1
0
- 1
- 6
4
6
2
- 4
3
- 18
P( 63 )
P( 55 )
P( 50 )
P( 45 )
P( 40 )
P( 35 )
P( 30 )
P( 24 )
P( 18 )
P( 12 )
P( 6 )
R ( 4)
R ( 9)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 49 )
R ( 54 )
R ( 59 )
R ( 64 )
R ( 69 )
(1, 0 ) Band
445 . 9726
458 . 1897
465 . 5865
472 . 7927
479 . 8026
486 . 6090
493 . 2048
500 . 8338
508 . 1402
515 . 1140
521 . 7433
532 . 9737
537 . 6667
542 . 0977
546 . 2604
550 . 1487
553 . 7580
557 . 0835
560 . 1206
562 . 8633
565 . 3104
567 . 4547
569 . 2923
570 . 8228
572 . 0390
P( 63 )
P( 52 )
P( 47 )
P( 42 )
P( 37 )
P( 32 )
P( 27 )
P( 22 )
P( 17 )
P( 11 )
P( 5 )
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
R ( 51 )
R ( 56 )
R ( 61 )
R ( 66 )
R ( 72 )
440 . 2661
456 . 7817
463 . 9964
471 . 0183
477 . 8402
484 . 4584
490 . 8649
497 . 0502
503 . 0131
509 . 8627
516 . 3701
528 . 3172
532 . 8623
537 . 1407
541 . 1516
544 . 8889
548 . 3472
551 . 5222
554 . 4087
557 . 0026
559 . 2997
561 . 2958
562 . 9864
564 . 3682
565 . 6133
5
- 1
1
0
- 9
0
12
- 2
3
2
2
- 1
15
1
- 1
- 1
- 1
1
0
0
1
1
- 4
- 12
- 28
P(60)
P(51)
P(46)
P(41)
P(36)
P(31)
P(26)
P(21)
P(15)
P(9 )
P(4 )
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 62 )
R ( 67 )
444 . 8524
458 . 2397
465 . 4158
472 . 4004
479 . 1812
485 . 7597
492 . 1187
498 . 2613
505 . 3350
512 . 0698
517 . 4202
529 . 2464
533 . 7416
537 . 9643
541 . 9213
545 . 6031
549 . 0048
552 . 1227
554 . 9510
557 . 4860
559 . 7232
561 . 6582
563 . 2882
564 . 6081
-
26
- 1
- 5
14
- 1
30
0
2
16
- 3
- 2
- 4
36
- 2
1
1
- 3
1
0
1
1
- 1
1
- 4
P( 55 )
P( 50 )
P( 45 )
P( 40 )
P( 35 )
P( 30 )
P( 25 )
P( 20 )
P( 14 )
P( 8 )
R ( 3)
R ( 8)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
R ( 53 )
R ( 58 )
R ( 63 )
R ( 68 )
(2, 1 ) Band
452 . 3637
459 . 6871
466 . 8286
473 . 7696
480 . 5129
487 . 0465
493 . 3650
499 . 4627
506 . 4798
513 . 1600
525 . 4683
530 . 1661
534 . 6046
538 . 7777
542 . 6800
546 . 3065
549 . 6515
552 . 7115
555 . 4809
557 . 9574
560 . 1344
562 . 0090
563 . 5770
564 . 8355
P( 58 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 29 )
P( 24 )
P( 19 )
P( 13 )
P( 7 )
R ( 3)
442 . 1681
455 . 2922
462 . 3246
469 . 1625
475 . 7992
482 . 2272
488 . 4438
494 . 4371
501 . 3311
507 . 8902
519 . 0093
31
- 3
- 2
1
4
- 5
14
1
- 3
8
36
P(57)
P(48)
P(43)
P(38)
P(33)
P(28)
P(23)
P(17)
P(11)
P(6 )
R ( 5)
443 . 6526
456 . 7157
463 . 7078
470 . 5066
477 . 1061
483 . 4884
489 . 6600
496 . 7709
503 . 5528
508 . 9489
520 . 8965
2
15
- 3
6
47
4
8
- 10
- 24
0
- 5
P( 56 )
P( 47 )
P( 42 )
P( 37 )
P( 32 )
P( 27 )
P( 22 )
P( 16 )
P( 10 )
P( 5 )
R ( 6)
( 3, 2 ) Band
445 . 1334
458 . 1244
465 . 0838
471 . 8416
478 . 3960
484 . 7396
490 . 8649
497 . 9310
504 . 6535
509 . 9993
521 . 8288
-1
).a
d
Line
Observed
d
Line
Observed
d
33
1
1
5
2
1
- 1
0
0
5
1
17
0
- 3
1
1
0
0
2
- 8
1
- 1
- 13
- 1
0
P( 62 )
P( 54 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 29 )
P( 23 )
P( 17 )
P( 11 )
P( 5 )
R (5 )
R (10 )
R (15 )
R (20 )
R (25 )
R (30 )
R (35 )
R (40 )
R (45 )
R (50 )
R (55 )
R (60 )
R (65 )
R (70 )
447 . 5268
459 . 6871
467 . 0431
474 . 2109
481 . 1807
487 . 9450
494 . 4985
502 . 0756
509 . 3268
516 . 2422
522 . 8153
533 . 9314
538 . 5743
542 . 9523
547 . 0603
550 . 8932
554 . 4450
557 . 7150
560 . 6928
563 . 3771
565 . 7636
567 . 8473
569 . 6249
571 . 0918
572 . 2443
-
6
32
- 2
- 2
2
- 1
1
14
10
- 4
13
- 4
1
2
2
2
- 10
9
0
- 2
1
1
5
5
- 1
P(59)
P(53)
P(48)
P(43)
P(38)
P(33)
P(28)
P(21)
P(15)
P(10)
P(4 )
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
R ( 51 )
R ( 56 )
R ( 61 )
R ( 66 )
R ( 72 )
452 . 1392
461 . 1709
468 . 4921
475 . 6208
482 . 5489
489 . 2731
495 . 7834
504 . 5281
511 . 6686
517 . 3623
523 . 8747
534 . 8814
539 . 4711
543 . 7955
547 . 8487
551 . 6261
555 . 1225
558 . 3332
561 . 2532
463 . 8787
566 . 2046
568 . 2277
569 . 9447
571 . 3471
572 . 6163
-
6
0
- 3
- 2
- 12
2
4
0
- 5
2
- 3
2
0
1
- 1
0
- 1
1
- 1
2
0
4
20
0
- 6
2
31
0
- 21
- 2
2
1
1
0
3
15
2
- 1
1
2
5
0
- 1
- 7
1
1
1
0
3
P( 54 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 29 )
P( 24 )
P( 19 )
P( 13 )
P( 7 )
R (4 )
R (9 )
R (14 )
R (19 )
R (24 )
R (29 )
R (34 )
R (39 )
R (44 )
R (49 )
R (54 )
R (59 )
R (64 )
R (69 )
453 . 8464
461 . 1312
468 . 2326
475 . 1355
481 . 8381
488 . 3273
494 . 6025
500 . 6551
507 . 6168
514 . 2391
526 . 4278
531 . 0745
535 . 4603
539 . 5773
543 . 4272
546 . 9978
550 . 2867
553 . 2885
556 . 0003
558 . 4167
560 . 5338
562 . 3447
563 . 8537
565 . 0494
28
20
- 5
- 8
15
- 1
2
- 1
- 1
- 3
5
- 2
- 3
- 26
- 1
1
2
- 4
- 1
0
2
- 24
1
1
P(53)
P(48)
P(43)
P(38)
P(33)
P(28)
P(23)
P(18)
P(12)
P(6 )
R ( 5)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 50 )
R ( 55 )
R ( 60 )
R ( 65 )
R ( 70 )
455 . 3164
462 . 5689
469 . 6280
476 . 4907
433 . 1519
489 . 5997
495 . 8309
501 . 8389
508 . 7431
515 . 3077
527 . 3780
531 . 9735
536 . 3036
540 . 3714
544 . 1637
547 . 6783
550 . 9103
553 . 8547
556 . 5077
558 . 8638
560 . 9207
562 . 6736
564 . 1175
565 . 2503
0
3
- 16
- 21
2
- 1
0
3
- 13
- 18
6
5
- 24
2
1
1
3
0
3
- 4
0
4
- 2
- 5
5
39
2
0
3
0
22
54
5
4
13
P( 55 )
P( 46 )
P( 41 )
P( 36 )
P( 31 )
P( 26 )
P( 21 )
P( 15 )
P( 9 )
P( 3 )
R (7 )
446 . 6041
459 . 5345
466 . 4512
473 . 1629
479 . 6813
485 . 9829
492 . 0659
499 . 0706
505 . 7414
512 . 0698
522 . 7483
-
P(51)
P(45)
P(40)
P(35)
P(30)
P(25)
P(20)
P(14)
P(8 )
R ( 2)
R ( 8)
452 . 4263
460 . 9336
467 . 8132
474 . 4879
480 . 9587
487 . 2169
493 . 2558
500 . 2055
506 . 8199
518 . 0462
523 . 6577
-
-
-
-
-
-
20
4
0
- 60
- 2
2
- 2
5
1
3
7
-
-
3
1
24
- 1
- 1
0
- 3
2
- 2
14
2
(continued )
462
B. Guo et al.
Table 1.
Line
Observed
d
R ( 9)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 50 )
R ( 55 )
R ( 61 )
R ( 66 )
524 . 5566
528 . 8980
532 . 9737
536 . 7810
540 . 3131
543 . 5657
546 . 5339
549 . 2136
552 . 0420
554 . 0720
556 . 1095
557 . 4711
-
P( 54 )
P( 39 )
P( 34 )
P( 29 )
P( 23 )
P( 17 )
P( 12 )
R ( 7)
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 50 )
R ( 55 )
R ( 61 )
-
P( 47 )
P( 31 )
P( 22 )
P( 16 )
R ( 17 )
R ( 24 )
R ( 30 )
R ( 37 )
R ( 43 )
R ( 49 )
R ( 55 )
a
Line
Observed
d
4
2
9
3
2
1
2
1
2
0
5
10
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 51 )
R ( 56 )
R ( 62 )
R ( 67 )
525 . 4466
529 . 7352
533 . 7577
537 . 5097
540 . 9859
544 . 1825
547 . 0932
549 . 7140
552 . 4720
554 . 4450
556 . 4059
557 . 7094
442 . 3687
463 . 2563
469 . 8305
476 . 1946
483 . 5591
490 . 6021
496 . 2232
516 . 3216
523 . 2400
527 . 2183
530 . 9307
534 . 3693
537 . 5304
540 . 4073
542 . 9971
545 . 2984
547 . 2998
549 . 3091
1
- 18
- 6
- 38
6
- 4
- 1
- 3
24
- 4
- 3
- 4
2
- 6
- 10
14
- 5
4
P(53)
P(38)
P(33)
P(28)
P(22)
P(16)
P(11)
R ( 8)
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
R ( 51 )
R ( 56 )
R ( 62 )
446 . 6041
467 . 7434
478 . 7130
485 . 6359
518 . 4146
523 . 7125
527 . 8276
532 . 1243
535 . 3685
538 . 1967
540 . 6039
60
23
4
8
- 67
- 6
1
- 4
7
0
- 8
P(42)
P(30)
P(21)
P(15)
R ( 18 )
R ( 25 )
R ( 33 )
R ( 38 )
R ( 44 )
R ( 51 )
R ( 56 )
Line
Observed
Line
Observed
d
Line
Observed
d
4
4
0
- 2
- 4
1
- 1
- 6
- 2
31
0
41
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 63 )
R ( 68 )
526 . 3283
530 . 5605
534 . 5299
538 . 2273
541 . 6480
544 . 7876
547 . 6409
550 . 6841
552 . 8896
554 . 7995
556 . 6900
557 . 9280
34
3
1
2
1
1
0
30
- 5
- 2
- 4
0
R (12 )
R (17 )
R (22 )
R (27 )
R (32 )
R (37 )
R (42 )
R (48 )
R (53 )
R (58 )
R (64 )
R (70 )
527 . 1929
531 . 3759
535 . 2913
538 . 9334
542 . 2985
545 . 3810
548 . 1767
551 . 1467
553 . 2944
555 . 1449
556 . 9624
558 . 3334
-
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 49 )
R ( 54 )
R ( 59 )
R ( 65 )
528 . 0509
532 . 1807
536 . 0418
539 . 6296
542 . 9379
545 . 9635
548 . 7012
551 . 6004
553 . 6899
555 . 4809
557 . 2227
-
443 . 8143
464 . 5890
471 . 1215
477 . 4483
484 . 7544
491 . 7449
497 . 3230
517 . 2235
524 . 0550
527 . 9830
531 . 6404
535 . 0235
538 . 1283
540 . 9483
543 . 4809
545 . 7213
547 . 6655
549 . 6003
6
1
3
18
- 3
- 1
32
10
- 1
2
- 4
- 7
- 3
- 7
- 5
- 1
4
- 8
P( 45 )
P( 37 )
P( 32 )
P( 26 )
P( 21 )
P( 15 )
R ( 2)
R ( 9)
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 64 )
( 4, 3 ) Band
455 . 1078
465 . 9128
472 . 4004
479 . 9172
485 . 9419
492 . 8786
511 . 6686
518 . 1128
524 . 8618
528 . 7357
532 . 3392
535 . 6672
538 . 7151
541 . 4782
543 . 9529
546 . 1341
548 . 0172
550 . 1487
0
11
- 27
- 1
- 2
2
22
- 1
- 1
- 4
- 4
- 4
- 3
- 5
0
1
- 8
- 5
P( 44 )
P( 36 )
P( 31 )
P( 25 )
P( 20 )
P( 14 )
R (3 )
R (13 )
R (18 )
R (23 )
R (28 )
R (33 )
R (38 )
R (43 )
R (48 )
R (53 )
R (59 )
456 . 4854
467 . 2259
473 . 6767
481 . 1395
487 . 1256
494 . 0029
512 . 6153
521 . 5686
525 . 6574
529 . 4782
533 . 0271
536 . 3036
539 . 2903
541 . 9967
544 . 4125
546 . 5339
548 . 6880
-
3
3
1
- 2
49
3
- 23
- 26
- 8
- 4
- 3
38
- 7
0
- 2
- 8
5
P(42)
P(35)
P(30)
P(24)
P(18)
P(13)
R ( 5)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 49 )
R ( 54 )
R ( 60 )
459 . 2167
468 . 5327
474 . 9420
482 . 3538
489 . 4507
495 . 1171
514 . 4903
522 . 4093
526 . 4435
530 . 2103
533 . 7014
536 . 9207
539 . 8534
542 . 5028
544 . 8605
546 . 9231
549 . 0048
453 . 4215
468 . 9940
479 . 8881
486 . 7569
519 . 2043
524 . 4255
529 . 7352
532 . 6936
535 . 8679
539 . 0468
540 . 9656
3
- 1
- 4
- 6
- 48
- 6
- 9
0
- 3
3
10
P( 35 )
P( 28 )
P( 19 )
P( 14 )
R ( 21 )
R ( 26 )
R ( 34 )
R ( 39 )
R ( 45 )
R ( 52 )
R ( 58 )
( 5, 4 ) Band
462 . 6496
471 . 4758
482 . 2139
487 . 8711
521 . 5074
525 . 1287
530 . 3500
533 . 2501
536 . 3564
539 . 4544
541 . 6480
29
10
1
4
- 18
5
- 1
- 11
- 7
6
- 6
P( 34 )
P( 27 )
P( 18 )
P( 13 )
R (22 )
R (28 )
R (35 )
R (41 )
R (46 )
R (53 )
R (59 )
463 . 9356
472 . 7020
483 . 3552
488 . 9722
522 . 2547
526 . 4997
530 . 9527
534 . 3320
536 . 8356
539 . 8534
541 . 9720
30
6
- 80
- 26
1
- 1
- 2
- 4
11
41
- 8
P(32)
P(25)
P(17)
P(12)
R ( 23 )
R ( 29 )
R ( 36 )
R ( 42 )
R ( 48 )
R ( 54 )
466 . 4827
475 . 1355
484 . 5060
490 . 0702
522 . 9892
527 . 1695
531 . 5440
534 . 8556
537 . 7550
540 . 2323
d
-
3
3
1
4
2
2
2
0
- 17
- 3
- 2
- 27
-
1
1
0
4
0
1
0
- 1
- 2
22
2
-
14
1
3
3
- 1
- 5
3
- 3
- 3
0
- 28
1
- 18
- 5
- 2
- 3
6
-
28
31
23
4
0
3
- 4
- 2
6
- 7
Observed - calculated di€ erences ( columns labelled d ) are in units of 0 . 0001 cm - 1 .
potential function can be determ ined from a least
squares ® t [10] of the combined 7LiI and 6LiI data set
to the eigenvalues of the radial SchroÈ dinger equation:
(
Continued.
2
2
h d
2¹ dR 2
-
U eff ( R ) + E ( v , J )
´
-
2
h
1 + q( R)
2¹
J ( J + 1)
R2
[
)
U
]
y ( R , v, J ) = 0 ,
with
( 4)
where the e€ ective internuclear potential for vibrational
motion is given by
U eff ( R ) = U BO ( R ) +
ULi ( R )
M Li ,
and the form of the Born± Oppenheimer potential is
chosen to be
( 5)
BO
( R) = D e
[-
1 - e- b
b ( R) = z
b (¥
)=
å
(R)
1
e- b ( ¥ )
å
i
b iz ,
],
2
( 6)
( 7)
i= 0
,
( 8)
R - Re
.
R + Re
( 9)
b
i
i= 0
and
z=
463
FT IR spectra of L iI
Table 2.
7
LiI infrared transitions (in cm
Line
Observed
d
Line
Observed
d
Line
Observed
P( 78 )
P( 72 )
P( 67 )
P( 62 )
P( 57 )
P( 52 )
P( 47 )
P( 41 )
P( 36 )
P( 30 )
P( 25 )
P( 20 )
P( 15 )
P( 10 )
P( 5 )
R ( 0)
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 37 )
R ( 42 )
R ( 48 )
R ( 54 )
R ( 59 )
R ( 64 )
R ( 69 )
R ( 74 )
R ( 79 )
R ( 84 )
R ( 89 )
400 . 8613
409 . 1570
415 . 9239
422 . 5519
429 . 0353
435 . 3690
441 . 5475
448 . 7507
454 . 5723
461 . 3327
466 . 7728
472 . 0325
477 . 1061
481 . 9914
486 . 6817
492 . 0479
497 . 1206
501 . 1183
504 . 9039
508 . 4725
511 . 8209
514 . 9450
518 . 3930
521 . 0113
523 . 8422
526 . 3283
528 . 1331
529 . 6917
531 . 0015
532 . 0595
532 . 8623
533 . 4113
533 . 7014
12
- 1
- 2
1
3
4
- 1
- 4
- 2
- 1
- 2
- 1
- 7
0
- 1
2
2
- 1
0
- 1
- 2
- 2
- 2
- 1
- 1
- 2
- 1
0
0
- 1
- 14
2
16
P(77)
P(71)
P(66)
P(61)
P(56)
P(51)
P(46)
P(40)
P(35)
P(29)
P(24)
P(19)
P(14)
P(9 )
P(4 )
R ( 1)
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 49 )
R ( 55 )
R ( 60 )
R ( 65 )
R ( 70 )
R ( 75 )
R ( 80 )
R ( 85 )
R ( 90 )
402 . 2570
410 . 5216
417 . 2613
423 . 8601
430 . 3139
436 . 6170
442 . 7643
449 . 9287
455 . 7163
462 . 4339
467 . 8394
473 . 0624
478 . 0989
482 . 9451
487 . 5960
492 . 9136
497 . 9373
501 . 8926
505 . 6350
509 . 1599
512 . 4645
516 . 1311
518 . 9353
521 . 5069
524 . 2806
526 . 7089
528 . 4647
529 . 9737
531 . 2333
532 . 2408
532 . 9934
533 . 4898
533 . 7266
11
2
3
- 1
0
1
- 1
- 1
- 1
- 11
- 1
0
- 2
- 1
- 1
- 1
5
- 1
- 1
- 2
6
- 1
- 1
0
- 1
- 1
0
0
- 1
- 1
- 3
2
4
P( 75 )
P( 70 )
P( 65 )
P( 60 )
P( 55 )
P( 50 )
P( 45 )
P( 39 )
P( 34 )
P( 28 )
P( 23 )
P( 18 )
P( 13 )
P( 8 )
P( 3 )
R ( 2)
R ( 8)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 50 )
R ( 56 )
R ( 61 )
R ( 66 )
R ( 71 )
R ( 76 )
R ( 81 )
R ( 86 )
R ( 91 )
(1, 0 ) Band
405 . 0319
411 . 8803
418 . 5924
425 . 1627
431 . 5866
437 . 8589
443 . 9746
451 . 0996
456 . 8535
463 . 5301
468 . 8986
474 . 0846
479 . 0836
483 . 8910
488 . 5025
493 . 7715
498 . 7440
502 . 6583
506 . 3574
509 . 8386
513 . 0980
516 . 7104
519 . 4685
521 . 9929
524 . 7095
527 . 0797
528 . 7863
530 . 2457
531 . 4551
532 . 4119
533 . 1134
533 . 5581
533 . 7416
P( 74 )
P( 68 )
P( 63 )
P( 58 )
P( 52 )
P( 47 )
P( 42 )
P( 37 )
P( 32 )
P( 27 )
P( 21 )
P( 16 )
P( 10 )
P( 5 )
R ( 0)
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
R ( 51 )
R ( 56 )
R ( 61 )
R ( 67 )
R ( 72 )
R ( 77 )
R ( 82 )
R ( 87 )
401 . 5492
409 . 6457
416 . 2428
422 . 6978
430 . 2491
436 . 3736
442 . 3398
448 . 1429
453 . 7779
459 . 2402
465 . 5615
470 . 6257
476 . 4576
481 . 1055
486 . 4216
491 . 4475
495 . 4081
499 . 1578
502 . 6921
506 . 0074
509 . 1003
511 . 9670
514 . 6039
517 . 0079
519 . 1753
521 . 1033
522 . 7889
524 . 4874
525 . 6292
526 . 5199
527 . 1567
527 . 5373
9
3
2
0
0
0
0
- 1
0
0
10
- 6
- 1
1
- 4
- 2
- 1
2
1
- 1
- 1
- 1
- 2
0
- 1
- 1
0
1
0
1
0
- 3
P(72)
P(67)
P(62)
P(57)
P(51)
P(46)
P(41)
P(36)
P(31)
P(26)
P(20)
P(15)
P(9 )
P(4 )
R ( 1)
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 62 )
R ( 68 )
R ( 73 )
R ( 78 )
R ( 83 )
R ( 88 )
404 . 2673
410 . 9761
417 . 5451
423 . 9715
431 . 4866
437 . 5797
443 . 5136
449 . 2829
454 . 8843
460 . 3114
466 . 5884
471 . 6171
477 . 4026
482 . 0115
487 . 2800
492 . 2567
496 . 1758
499 . 8818
503 . 3727
506 . 6416
509 . 6904
512 . 5129
515 . 1040
517 . 4608
519 . 5803
521 . 4603
523 . 0967
524 . 7356
525 . 8271
526 . 6677
527 . 2537
527 . 5826
-
P( 71 )
P( 66 )
P( 61 )
P( 56 )
P( 50 )
P( 45 )
P( 40 )
P( 35 )
P( 30 )
P( 25 )
P( 19 )
P( 13 )
P( 8 )
P( 3 )
R ( 2)
R ( 8)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
R ( 53 )
R ( 58 )
R ( 64 )
R ( 69 )
R ( 74 )
R ( 79 )
R ( 84 )
R ( 89 )
( 2, 1 ) Band
405 . 6216
412 . 3013
418 . 8422
425 . 2388
432 . 7177
438 . 7794
444 . 6809
450 . 4173
455 . 9837
461 . 3756
467 . 6088
473 . 5758
478 . 3401
482 . 9092
488 . 1300
493 . 0572
496 . 9335
500 . 5973
504 . 0446
507 . 2711
510 . 2743
513 . 0495
515 . 5938
517 . 9034
519 . 9757
521 . 8070
523 . 6826
524 . 9739
526 . 0156
526 . 8050
527 . 3397
527 . 6173
14
1
- 1
1
1
0
0
- 7
- 1
- 2
0
- 1
- 1
1
0
2
7
0
0
- 24
- 15
- 1
5
4
1
3
1
0
- 3
1
3
- 2
-
-
-
-
-
).a
Line
Observed
2
0
2
0
1
1
1
2
1
1
2
2
1
1
0
1
9
1
2
1
2
2
0
1
1
0
0
0
1
0
2
3
6
P( 74 )
P( 69 )
P( 64 )
P( 59 )
P( 54 )
P( 49 )
P( 43 )
P( 38 )
P( 32 )
P( 27 )
P( 22 )
P( 17 )
P( 12 )
P( 7 )
P( 2 )
R (3 )
R (9 )
R (14 )
R (19 )
R (24 )
R (29 )
R (35 )
R (40 )
R (46 )
R (51 )
R (57 )
R (62 )
R (67 )
R (72 )
R (77 )
R (82 )
R (87 )
406 . 4144
413 . 2338
419 . 9177
426 . 4594
432 . 8534
439 . 0947
446 . 3749
452 . 2640
459 . 1069
464 . 6175
469 . 9506
475 . 0998
480 . 0605
484 . 8291
489 . 4007
494 . 6213
499 . 5443
503 . 4155
507 . 0713
510 . 5077
513 . 7225
517 . 2805
519 . 9923
522 . 9366
525 . 1287
527 . 4406
529 . 0981
530 . 5077
531 . 6667
532 . 5725
533 . 2231
533 . 6159
7
3
1
1
1
0
1
0
2
2
2
4
0
2
0
2
0
1
1
4
1
1
0
1
1
1
0
0
1
2
1
5
P( 70 )
P( 65 )
P( 60 )
P( 55 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 29 )
P( 23 )
P( 18 )
P( 12 )
P( 7 )
P( 2 )
R (3 )
R (9 )
R (14 )
R (19 )
R (24 )
R (29 )
R (34 )
R (39 )
R (44 )
R (49 )
R (54 )
R (59 )
R (65 )
R (70 )
R (75 )
R (80 )
R (85 )
R (90 )
406 . 9685
413 . 6207
420 . 1330
426 . 5004
433 . 9427
439 . 9727
445 . 8416
451 . 5444
457 . 0745
463 . 4825
468 . 6227
474 . 5443
479 . 2695
483 . 7995
488 . 9722
493 . 8491
497 . 6833
501 . 3043
504 . 7077
507 . 8902
510 . 8477
513 . 5770
516 . 0745
518 . 3370
520 . 3610
522 . 1441
523 . 9607
525 . 2024
526 . 1939
526 . 9324
527 . 4160
527 . 6401
d
-
-1
Line
Observed
d
20
1
- 1
- 1
- 1
- 2
- 11
- 1
- 2
- 7
- 1
1
- 2
- 1
- 2
2
- 2
0
- 1
- 7
- 1
- 1
1
- 1
- 1
0
0
0
0
- 2
1
4
P(73)
P(68)
P(63)
P(58)
P(53)
P(48)
P(42)
P(37)
P(31)
P(26)
P(21)
P(16)
P(11)
P(6 )
P(1 )
R ( 4)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 36 )
R ( 41 )
R ( 47 )
R ( 52 )
R ( 58 )
R ( 63 )
R ( 68 )
R ( 73 )
R ( 78 )
R ( 83 )
R ( 88 )
407 . 7880
414 . 5819
421 . 2376
427 . 7514
434 . 1139
440 . 3244
447 . 5666
453 . 4216
460 . 2234
465 . 6991
470 . 9955
476 . 1069
481 . 0299
485 . 7597
490 . 2912
495 . 4625
500 . 3356
504 . 1638
507 . 7763
511 . 1691
514 . 3383
517 . 8414
520 . 5064
523 . 3943
525 . 5383
527 . 7917
529 . 3999
530 . 7595
531 . 8682
532 . 7230
533 . 3222
533 . 6629
6
2
- 1
12
- 2
- 1
- 3
- 1
0
- 2
2
- 2
0
2
0
0
- 1
- 2
- 1
- 1
- 2
- 1
- 1
0
- 1
- 2
0
- 1
0
- 2
0
1
6
1
- 1
- 1
1
0
0
0
- 19
- 1
4
0
- 2
- 1
5
0
- 2
0
- 1
0
- 1
- 1
- 1
0
- 1
1
0
0
0
- 1
0
- 23
P(69)
P(64)
P(59)
P(53)
P(48)
P(43)
P(38)
P(33)
P(28)
P(22)
P(17)
P(11)
P(6 )
P(1 )
R ( 4)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 50 )
R ( 55 )
R ( 60 )
R ( 66 )
R ( 71 )
R ( 76 )
R ( 81 )
R ( 86 )
R ( 91 )
408 . 3089
- 4
414 . 9345
1
421 . 4180
- 4
429 . 0057
0
435 . 1604
- 9
441 . 1596
1
446 . 9956
0
452 . 6646
- 1
458 . 1618
- 1
464 . 5251
0
469 . 6280
0
475 . 5046
- 2
480 . 1916
2
484 . 6820
2
489 . 8052
- 1
494 . 6332
4
498 . 4251
2
502 . 0025
0
505 . 3620
0
508 . 4998
0
511 . 4119
- 1
514 . 0953
1
516 . 5443
- 16
518 . 7611
1
520 . 7371
0
.
522 4700
- 13
524 . 2290
0
525 . 4208
0
526 . 3618
- 1
.
527 0497
0
527 . 4818
- 2
527 . 6562
- 3
(continued )
d
464
B. Guo et al.
Table 2.
Continued
Line
Observed
d
Line
Observed
d
Line
Observed
P( 71 )
P( 66 )
P( 61 )
P( 56 )
P( 51 )
P( 46 )
P( 41 )
P( 36 )
P( 31 )
P( 26 )
P( 21 )
P( 16 )
P( 11 )
P( 6 )
P( 1 )
R ( 5)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 50 )
R ( 55 )
R ( 61 )
R ( 66 )
R ( 71 )
R ( 77 )
R ( 82 )
R ( 89 )
400 . 7765
407 . 3957
413 . 8789
420 . 2197
426 . 4120
432 . 4512
438 . 3327
444 . 0515
449 . 6021
454 . 9814
460 . 1836
465 . 2039
470 . 0382
474 . 6826
479 . 1319
485 . 0266
488 . 9900
492 . 7456
496 . 2909
499 . 6156
502 . 7220
505 . 6045
508 . 2598
510 . 6842
512 . 8747
514 . 8275
516 . 8541
518 . 2750
519 . 4498
520 . 5305
531 . 1538
521 . 5998
16
- 2
- 3
2
1
- 1
- 1
- 1
- 6
- 2
1
1
- 1
4
4
14
1
- 2
19
- 1
- 1
0
1
1
2
- 1
0
0
2
2
- 2
1
P(70)
P(65)
P(60)
P(55)
P(50)
P(45)
P(40)
P(35)
P(30)
P(25)
P(20)
P(15)
P(10)
P(5 )
R ( 1)
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
R ( 51 )
R ( 56 )
R ( 62 )
R ( 67 )
R ( 72 )
R ( 78 )
R ( 83 )
402 . 1091
408 . 7038
415 . 1585
421 . 4701
427 . 6322
433 . 6404
439 . 4897
445 . 1769
450 . 6923
456 . 0361
461 . 2021
466 . 1857
470 . 9823
475 . 5877
481 . 7055
485 . 8350
489 . 7578
493 . 4701
496 . 9717
500 . 2545
503 . 3159
506 . 1538
508 . 7631
511 . 1410
513 . 2840
515 . 1895
517 . 1578
518 . 5297
519 . 6549
520 . 6750
521 . 2483
-
8
1
- 3
1
0
0
0
16
0
- 1
- 1
- 1
- 2
- 1
- 2
3
- 1
- 15
- 1
- 2
- 7
- 2
0
0
- 1
0
0
0
1
- 3
0
P( 69 )
P( 64 )
P( 59 )
P( 54 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 29 )
P( 24 )
P( 19 )
P( 14 )
P( 9 )
P( 4 )
R (2 )
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 57 )
R ( 52 )
R ( 57 )
R ( 63 )
R ( 68 )
R ( 73 )
R ( 79 )
R ( 84 )
P( 62 )
P( 57 )
P( 52 )
P( 47 )
P( 42 )
P( 37 )
P( 32 )
P( 27 )
P( 22 )
P( 17 )
P( 12 )
P( 6 )
R ( 2)
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 38 )
R ( 43 )
R ( 48 )
R ( 54 )
R ( 60 )
R ( 65 )
R ( 72 )
R ( 79 )
R ( 84 )
407 . 6964
414 . 0109
420 . 1770
426 . 1937
432 . 0547
437 . 7555
443 . 2907
448 . 6561
453 . 8464
458 . 8584
463 . 6863
469 . 2312
477 . 0234
481 . 0743
484 . 9191
488 . 5557
491 . 9789
495 . 1862
498 . 1727
501 . 4614
503 . 9515
506 . 2109
508 . 6126
510 . 6720
512 . 1224
513 . 7428
514 . 8781
515 . 3883
-
4
11
- 1
0
- 1
1
- 1
- 1
- 6
- 2
- 1
- 1
- 10
0
- 2
2
0
3
- 1
- 1
- 3
- 1
- 1
2
- 1
0
1
2
P(61)
P(56)
P(51)
P(46)
P(41)
P(36)
P(31)
P(26)
P(21)
P(16)
P(11)
P(5 )
R ( 3)
R ( 8)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 50 )
R ( 55 )
R ( 61 )
R ( 66 )
R ( 73 )
R ( 80 )
R ( 85 )
408 . 9711
415 . 2552
421 . 3924
427 . 3786
433 . 2069
438 . 8758
444 . 3777
449 . 7085
454 . 8639
459 . 8387
464 . 6277
470 . 1275
477 . 8497
481 . 8598
485 . 6632
489 . 2574
492 . 6376
495 . 8010
499 . 3050
501 . 9779
504 . 4221
507 . 0494
508 . 9797
510 . 9804
512 . 3834
513 . 9350
515 . 0003
515 . 4603
3
2
- 2
0
- 11
- 1
1
0
1
- 3
- 19
- 10
- 9
0
- 1
1
- 2
0
- 2
0
- 1
0
- 1
- 9
0
1
1
5
P( 58 )
P( 52 )
P( 46 )
407 . 8712
415 . 2237
422 . 3607
4
3
2
P(57)
P(50)
P(45)
409 . 1109
417 . 6270
423 . 5283
1
2
8
-
-
d
Line
Observed
d
(3, 2 ) Band
403 . 4400
410 . 0059
416 . 4311
422 . 7143
428 . 8463
434 . 8231
440 . 6400
446 . 2924
451 . 7752
457 . 0817
462 . 2137
467 . 1602
471 . 9189
476 . 4837
482 . 5489
486 . 6359
490 . 5174
494 . 1889
497 . 6458
500 . 8852
503 . 9023
506 . 6940
509 . 2573
511 . 5885
513 . 6843
515 . 5425
517 . 4523
518 . 7749
519 . 8500
520 . 8099
521 . 3323
5
1
- 16
- 1
0
0
- 1
0
1
- 21
1
0
0
- 18
11
0
- 1
1
0
4
2
- 1
0
0
- 1
7
4
3
2
- 2
- 1
P( 68 )
P( 63 )
P( 58 )
P( 53 )
P( 48 )
P( 43 )
P( 38 )
P( 33 )
P( 28 )
P( 23 )
P( 18 )
P( 13 )
P( 8 )
P( 3 )
R (3 )
R (8 )
R (13 )
R (18 )
R (23 )
R (28 )
R (33 )
R (38 )
R (43 )
R (48 )
R (53 )
R (58 )
R (64 )
R (69 )
R (74 )
R (80 )
R (85 )
404 . 7635
411 . 3019
417 . 7008
423 . 9528
430 . 0541
435 . 9994
441 . 7839
447 . 4026
452 . 8509
458 . 1244
463 . 2178
468 . 1270
472 . 8476
477 . 3758
483 . 3821
487 . 4289
491 . 2687
494 . 8974
498 . 3109
501 . 5062
504 . 4786
507 . 2251
509 . 7422
512 . 0265
514 . 0751
515 . 8844
517 . 7361
519 . 0093
520 . 0350
520 . 9350
521 . 4062
-
P( 60 )
P( 55 )
P( 50 )
P( 45 )
P( 40 )
P( 35 )
P( 30 )
P( 25 )
P( 20 )
P( 15 )
P( 9 )
P( 4 )
R ( 4)
R ( 9)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 51 )
R ( 56 )
R ( 62 )
R ( 67 )
R ( 74 )
R ( 81 )
R ( 86 )
( 4, 3 ) Band
410 . 2398
416 . 4942
422 . 6021
428 . 5571
434 . 3543
439 . 9896
445 . 4575
450 . 7536
455 . 8732
460 . 8118
466 . 4936
471 . 0183
478 . 6682
482 . 6370
486 . 3990
489 . 9507
493 . 2878
496 . 4073
499 . 8577
502 . 4851
504 . 8835
507 . 4542
509 . 3376
511 . 2810
512 . 6344
514 . 1170
515 . 1140
515 . 5246
6
3
0
0
- 3
- 1
- 1
- 1
- 2
- 3
3
2
- 5
- 1
0
1
- 1
0
- 1
- 1
0
- 1
2
- 2
- 2
0
18
33
P( 59 )
P( 54 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 29 )
P( 24 )
P( 19 )
P( 14 )
P( 8 )
P( 3 )
R (5 )
R (10 )
R (15 )
R (20 )
R (25 )
R (30 )
R (36 )
R (41 )
R (46 )
R (52 )
R (58 )
R (63 )
R (70 )
R (75 )
R (82 )
R (87 )
411 . 5018
417 . 7273
423 . 8055
429 . 7295
435 . 4945
441 . 0966
446 . 5307
451 . 7920
456 . 8772
461 . 7776
467 . 4135
471 . 9007
479 . 4789
483 . 4060
487 . 1256
490 . 6345
493 . 9292
497 . 0046
500 . 4012
502 . 9831
505 . 3350
507 . 8499
510 . 0237
511 . 5715
513 . 3291
514 . 2898
515 . 2146
515 . 5752
P( 56 )
P( 49 )
P( 44 )
( 5, 4 ) Band
410 . 3447
418 . 8196
424 . 6906
-
P( 55 )
P( 48 )
P( 43 )
411 . 5737
420 . 0067
425 . 8458
-
-
-
3
0
3
Line
Observed
3
8
0
2
1
0
0
0
1
2
0
1
1
4
4
0
0
1
3
0
1
1
0
1
1
0
0
3
1
1
1
P(67)
P(62)
P(57)
P(52)
P(47)
P(42)
P(37)
P(32)
P(27)
P(22)
P(17)
P(12)
P(7 )
P(2 )
R ( 4)
R ( 9)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 49 )
R ( 54 )
R ( 59 )
R ( 65 )
R ( 70 )
R ( 75 )
R ( 81 )
R ( 88 )
406 . 0826
412 . 5934
418 . 9637
425 . 1852
431 . 2559
437 . 1695
442 . 9209
448 . 5060
453 . 9197
459 . 1574
464 . 2144
469 . 0865
473 . 7696
478 . 2570
484 . 2074
488 . 2136
492 . 0115
495 . 5977
498 . 9677
502 . 1183
505 . 0460
507 . 7470
510 . 2178
512 . 4554
514 . 4554
516 . 2174
518 . 0104
519 . 2344
520 . 2102
521 . 0496
521 . 5686
0
7
0
1
- 2
- 2
0
0
15
0
0
9
2
- 1
- 7
- 8
- 1
- 1
- 2
- 1
- 3
- 1
- 1
1
0
7
4
24
P(58)
P(53)
P(48)
P(43)
P(38)
P(33)
P(28)
P(23)
P(18)
P(13)
P(7 )
P(2 )
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 37 )
R ( 42 )
R ( 47 )
R ( 53 )
R ( 59 )
R ( 64 )
R ( 71 )
R ( 78 )
R ( 83 )
412 . 7582
418 . 9562
425 . 0025
430 . 8953
436 . 6288
442 . 1971
447 . 5969
452 . 8230
457 . 8706
462 . 7357
468 . 3261
472 . 7737
480 . 2804
484 . 1668
487 . 8446
491 . 3114
494 . 5622
497 . 5931
500 . 9359
503 . 4720
505 . 7777
508 . 2361
510 . 3525
511 . 8518
513 . 5410
514 . 7452
515 . 3077
5
7
- 2
0
4
- 1
0
0
- 2
- 1
- 2
0
- 2
0
- 5
0
2
- 1
- 2
- 2
- 1
0
- 1
0
0
- 6
15
2
6
6
P(54)
P(47)
P(42)
412 . 7956
421 . 1866
426 . 9959
-
-
-
-
-
-
-
d
0
3
6
- 2
0
1
- 1
- 1
- 1
0
- 1
0
7
- 4
- 1
1
0
1
- 2
- 2
- 1
0
- 1
1
- 7
1
- 1
- 1
0
1
18
-
-
4
0
2
465
FT IR spectra of L iI
Table 2.
Continued
Line
Observed
d
Line
Observed
d
Line
Observed
d
Line
Observed
d
Line
Observed
d
P( 41 )
P( 36 )
P( 31 )
P( 26 )
P( 20 )
P( 15 )
P( 10 )
P( 5 )
R ( 2)
R ( 7)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
R ( 53 )
R ( 58 )
R ( 63 )
R ( 68 )
R ( 76 )
R ( 81 )
428 . 1381
433 . 7562
439 . 2087
444 . 4917
450 . 6016
455 . 4989
460 . 2055
464 . 7272
471 . 5608
475 . 5714
480 . 1165
483 . 6761
487 . 0237
490 . 1554
493 . 0686
495 . 7582
498 . 2218
500 . 4561
502 . 4578
504 . 2243
505 . 7524
507 . 0388
508 . 5896
509 . 2407
-
P(40)
P(35)
P(30)
P(25)
P(19)
P(14)
P(9 )
P(4 )
R ( 3)
R ( 8)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 49 )
R ( 54 )
R ( 59 )
R ( 64 )
R ( 70 )
R ( 77 )
429 . 2751
434 . 8598
440 . 2789
445 . 5277
451 . 5945
456 . 4522
461 . 1230
465 . 6081
472 . 3802
476 . 3472
480 . 8458
484 . 3622
487 . 6673
490 . 7557
493 . 6240
496 . 2691
498 . 6872
500 . 8758
502 . 8302
504 . 5491
506 . 0291
507 . 4854
508 . 7431
1
1
2
0
- 1
0
- 19
- 3
26
- 21
4
- 6
- 2
- 1
- 2
0
0
4
- 1
- 1
0
- 1
41
P( 39 )
P( 34 )
P( 29 )
P( 24 )
P( 18 )
P( 13 )
P( 8 )
P( 3 )
R ( 4)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
R ( 50 )
R ( 55 )
R ( 60 )
R ( 65 )
R ( 71 )
R ( 78 )
430 . 4049
435 . 9570
441 . 3425
446 . 5566
452 . 5808
457 . 4017
462 . 0368
466 . 4827
473 . 1863
477 . 8810
481 . 5657
485 . 0410
488 . 3025
491 . 3471
494 . 1712
496 . 7709
499 . 1435
501 . 2851
503 . 1935
504 . 8645
506 . 2965
507 . 6939
508 . 8789
-
1
1
0
0
0
- 1
- 1
7
- 17
1
0
2
0
- 1
1
- 1
1
0
3
1
4
- 3
4
P( 38 )
P( 33 )
P( 28 )
P( 23 )
P( 17 )
P( 12 )
P( 7 )
P( 2 )
R (5 )
R (11 )
R (16 )
R (21 )
R (26 )
R (31 )
R (36 )
R (41 )
R (46 )
R (51 )
R (56 )
R (61 )
R (66 )
R (73 )
R (79 )
431 . 5283
437 . 0476
442 . 3990
447 . 5785
453 . 5595
458 . 3438
462 . 9414
467 . 3478
473 . 9904
478 . 6345
482 . 2781
485 . 7103
488 . 9286
491 . 9296
494 . 7090
497 . 2636
499 . 5885
501 . 6853
503 . 5460
505 . 1699
506 . 5534
508 . 0819
509 . 0082
-
P(37)
P(32)
P(27)
P(22)
P(16)
P(11)
P(6 )
R ( 0)
R ( 6)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 62 )
R ( 67 )
R ( 75 )
R ( 80 )
432 . 6455
438 . 1311
443 . 4491
448 . 5931
454 . 5314
459 . 2789
463 . 8383
469 . 8996
474 . 7847
479 . 3796
482 . 9797
486 . 3713
489 . 5465
492 . 5033
495 . 2379
497 . 7473
500 . 0278
502 . 0756
503 . 8907
505 . 4661
506 . 8013
508 . 4302
509 . 1284
0
4
1
- 1
2
6
3
13
- 2
- 2
- 15
0
- 1
- 1
- 3
- 1
- 1
- 9
5
1
2
- 1
7
-
3
1
4
4
1
3
5
2
6
12
11
1
- 6
1
0
1
30
1
0
0
4
2
4
P( 51 )
P( 46 )
P( 41 )
P( 36 )
P( 31 )
P( 25 )
P( 20 )
P( 13 )
P( 8 )
R (3 )
R (9 )
R (15 )
R (20 )
R (25 )
R (30 )
R (35 )
R (40 )
R (46 )
R (51 )
R (56 )
R (61 )
R (67 )
R (77 )
411 . 5176
417 . 3982
423 . 1258
428 . 6909
434 . 0954
440 . 3580
445 . 3853
452 . 1245
456 . 7157
466 . 9628
471 . 6597
476 . 0638
479 . 5038
482 . 7345
485 . 7505
488 . 5442
491 . 1164
493 . 9055
495 . 9777
497 . 8160
499 . 4193
501 . 0288
502 . 9321
-
1
4
19
- 4
2
4
- 2
2
- 14
5
3
3
- 12
- 1
18
4
- 1
2
7
0
- 2
1
- 40
P(50)
P(45)
P(40)
P(35)
P(29)
P(24)
P(18)
P(12)
P(7 )
R ( 4)
R ( 10 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 47 )
R ( 52 )
R ( 57 )
R ( 62 )
R ( 68 )
R ( 78 )
412 . 7066
418 . 5552
424 . 2504
429 . 7860
436 . 2099
441 . 3773
447 . 3474
453 . 0575
457 . 6132
467 . 7650
472 . 4144
476 . 7693
480 . 1682
483 . 3552
486 . 3254
489 . 0763
491 . 6058
494 . 3381
496 . 3636
498 . 1561
499 . 7117
501 . 2633
503 . 0729
-
P( 44 )
P( 36 )
P( 29 )
P( 23 )
P( 18 )
P( 13 )
R (6 )
R (11 )
R (17 )
R (22 )
R (27 )
R (32 )
R (37 )
R (43 )
R (48 )
414 . 7756
423 . 6804
431 . 1317
437 . 2558
442 . 1665
446 . 9023
463 . 9647
467 . 7418
472 . 0093
475 . 3311
478 . 4431
481 . 3404
484 . 0190
486 . 9397
489 . 1253
-
P(43)
P(35)
P(28)
P(22)
P(17)
P(12)
R ( 7)
R ( 12 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 44 )
R ( 49 )
415 . 9116
424 . 7644
432 . 1693
438 . 2525
443 . 1292
447 . 8257
464 . 7362
468 . 4740
472 . 6875
475 . 9701
479 . 0399
481 . 8939
484 . 5281
487 . 3951
489 . 5347
4
2
0
- 2
3
35
1
2
16
2
- 3
- 1
0
- 2
3
0
- 1
- 2
- 4
- 2
1
- 2
1
34
-
2
1
2
1
- 1
0
2
0
- 2
0
5
- 1
- 4
- 1
- 1
- 2
- 18
- 3
- 4
- 1
- 1
0
1
-
( 6, 5 ) Band
P( 54 )
P( 49 )
P( 44 )
P( 39 )
P( 34 )
P( 28 )
P( 23 )
P( 17 )
P( 11 )
P( 6 )
R ( 5)
R ( 11 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 48 )
R ( 53 )
R ( 58 )
R ( 63 )
R ( 69 )
407 . 9176
413 . 8873
419 . 7067
425 . 3702
430 . 8728
437 . 2573
442 . 3903
448 . 3171
453 . 9840
458 . 5034
468 . 5601
473 . 1629
477 . 4659
480 . 8225
483 . 9652
486 . 8933
489 . 5997
492 . 0827
494 . 7617
496 . 7401
498 . 4861
499 . 9944
501 . 4905
P( 47 )
P( 41 )
P( 33 )
P( 26 )
P( 21 )
P( 16 )
P( 10 )
R ( 8)
R ( 13 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 40 )
R ( 45 )
411 . 3343
418 . 1629
426 . 9127
434 . 2247
439 . 2421
444 . 0830
449 . 6542
465 . 5009
469 . 1959
473 . 3606
476 . 6012
479 . 6285
482 . 4385
485 . 5197
487 . 8429
-
P(53)
P(48)
P(43)
P(38)
P(33)
P(27)
P(22)
P(15)
P(10)
P(4 )
R ( 6)
R ( 12 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 49 )
R ( 54 )
R ( 59 )
R ( 65 )
R ( 75 )
409 . 1230
415 . 0642
420 . 8543
426 . 4838
431 . 9536
438 . 2977
443 . 3954
450 . 2353
454 . 8995
460 . 2548
469 . 3473
473 . 8991
478 . 1532
481 . 4685
484 . 5692
487 . 4524
490 . 1143
492 . 5520
495 . 1766
497 . 1091
498 . 8066
500 . 5310
502 . 6331
-
P(46)
P(38)
P(32)
P(25)
P(20)
P(15)
P(7 )
R ( 9)
R ( 14 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 41 )
R ( 46 )
412 . 4873
421 . 4914
427 . 9775
435 . 2412
440 . 2241
445 . 0300
452 . 3369
466 . 2561
469 . 9117
474 . 0256
477 . 2238
480 . 2078
482 . 9780
486 . 0022
488 . 2814
4
6
2
0
1
1
5
1
2
17
0
26
6
0
- 12
0
- 1
2
0
- 5
3
1
24
8
7
- 15
- 7
- 6
- 12
- 14
- 5
- 18
- 16
- 13
- 9
- 12
- 14
3
-
8
3
21
1
0
2
- 1
1
- 29
- 10
2
6
- 4
1
0
1
- 1
1
6
7
1
2
3
P( 52 )
P( 47 )
P( 42 )
P( 37 )
P( 32 )
P( 26 )
P( 21 )
P( 14 )
P( 9 )
R ( 2)
R ( 8)
R ( 13 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 50 )
R ( 55 )
R ( 60 )
R ( 66 )
R ( 76 )
-
12
19
12
15
11
10
47
- 8
- 7
- 16
- 12
- 11
25
- 12
16
P( 45 )
P( 37 )
P( 30 )
P( 24 )
P( 19 )
P( 14 )
R ( 5)
R ( 10 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 42 )
R ( 47 )
410 . 3234
416 . 2339
421 . 9916
427 . 5912
433 . 0278
439 . 3313
444 . 3945
451 . 1836
455 . 8141
466 . 1526
470 . 8978
474 . 6285
478 . 8329
482 . 1059
485 . 1634
488 . 0026
490 . 6230
493 . 0122
495 . 5811
497 . 4670
499 . 1181
500 . 7847
502 . 7897
( 7, 6 ) Band
413 . 6351
422 . 5905
430 . 0877
436 . 2528
441 . 1989
445 . 9711
463 . 1858
467 . 0032
471 . 3159
474 . 6809
477 . 8386
480 . 7783
483 . 5010
486 . 4755
488 . 7063
8
1
- 2
- 3
- 17
5
- 10
- 10
- 14
- 27
- 5
- 14
- 13
- 13
- 15
15
8
7
9
- 24
- 5
- 17
- 18
20
- 6
- 14
- 15
- 14
- 14
- 13
-
8
2
2
7
0
1
4
- 2
0
- 2
5
7
3
4
0
0
18
0
2
4
1
0
0
-
-
5
9
9
7
- 10
- 20
- 17
- 7
- 14
- 13
- 14
- 13
- 14
- 13
- 16
(continued )
466
B. Guo et al.
Table 2.
Line
Observed
Line
Observed
R ( 51 )
R ( 56 )
R ( 61 )
R ( 67 )
490 . 3270
492 . 1443
493 . 7278
495 . 3153
11
12
13
15
R ( 52 )
R ( 57 )
R ( 62 )
R ( 68 )
490 . 7087
492 . 4799
494 . 0160
495 . 5470
-
P( 41 )
P( 24 )
P( 17 )
R ( 13 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 42 )
R ( 48 )
R ( 56 )
R ( 61 )
R ( 66 )
R ( 72 )
413 . 2563
431 . 1837
437 . 9979
463 . 8246
469 . 2565
472 . 3785
475 . 2918
477 . 9860
480 . 9293
483 . 5504
486 . 5334
488 . 0983
489 . 4275
490 . 7087
6
1
6
7
- 3
- 24
- 3
- 7
- 4
- 1
- 10
- 1
1
0
P(37)
P(23)
P(16)
R ( 15 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 43 )
R ( 51 )
R ( 57 )
R ( 62 )
R ( 68 )
P( 65 )
P( 51 )
P( 45 )
P( 40 )
P( 33 )
P( 27 )
P( 22 )
P( 15 )
R ( 9)
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
887 . 4996
911 . 9464
921 . 5836
929 . 2185
939 . 2976
947 . 3498
953 . 6508
961 . 8106
984 . 6506
989 . 2287
991 . 9935
994 . 3362
996 . 2560
997 . 7472
998 . 8104
999 . 4415
-
P( 62 )
P( 55 )
P( 49 )
P( 43 )
P( 38 )
P( 33 )
P( 28 )
P( 23 )
P( 18 )
P( 13 )
P( 5 )
R ( 9)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
R ( 49 )
882 . 5135
894 . 6821
904 . 5730
913 . 9593
921 . 3933
928 . 4506
935 . 1421
941 . 4603
947 . 4035
952 . 9507
961 . 0162
973 . 4051
976 . 7225
979 . 6261
982 . 1115
984 . 1780
985 . 8190
987 . 0386
987 . 8257
988 . 1861
P( 63 )
P( 52 )
P( 45 )
P( 40 )
P( 34 )
P( 29 )
P( 24 )
870 . 3989
889 . 2069
900 . 3082
907 . 8110
916 . 3454
923 . 0564
929 . 3926
Continued
Line
Observed
15
11
15
10
R ( 53 )
R ( 58 )
R ( 63 )
R ( 73 )
491 . 0816
492 . 8062
494 . 2952
496 . 5586
417 . 6442
432 . 1795
438 . 9421
465 . 2308
469 . 8979
472 . 9789
475 . 8479
478 . 4986
481 . 3882
484 . 7379
486 . 8655
488 . 3817
489 . 8936
1
12
- 17
- 8
- 6
- 15
- 6
- 7
- 9
- 4
- 4
- 13
9
P( 36 )
P( 21 )
P( 15 )
R ( 16 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 44 )
R ( 52 )
R ( 58 )
R ( 63 )
R ( 69 )
( 8, 7 ) Band
418 . 7251
434 . 1447
439 . 8840
465 . 9234
470 . 5315
473 . 5741
476 . 3966
479 . 0027
481 . 8364
485 . 1156
487 . 1863
488 . 6573
490 . 1126
P(62)
P(50)
P(44)
P(39)
P(32)
P(26)
P(21)
P(12)
R ( 11 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
892 . 9639
913 . 5860
923 . 1389
930 . 7021
940 . 6748
948 . 6407
954 . 8628
965 . 0932
986 . 0456
989 . 8153
992 . 4997
994 . 7531
996 . 5904
997 . 9980
998 . 9725
999 . 5145
-
17
- 2
9
4
2
2
16
80
- 9
6
44
- 12
18
29
17
14
P( 57 )
P( 49 )
P( 43 )
P( 38 )
P( 30 )
P( 25 )
P( 19 )
P( 11 )
R ( 12 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
5
7
- 3
5
75
22
7
9
61
3
- 68
- 20
4
18
15
20
- 2
23
8
37
P(61)
P(53)
P(48)
P(42)
P(37)
P(32)
P(27)
P(22)
P(17)
P(12)
R ( 3)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
884 . 2949
898 . 0353
906 . 1744
915 . 4738
922 . 8283
929 . 8178
936 . 4344
942 . 6786
948 . 5392
954 . 0077
968 . 8921
974 . 1043
977 . 3378
980 . 1574
982 . 5589
984 . 5404
986 . 0971
987 . 2289
987 . 9322
19
9
13
7
7
10
- 8
11
2
- 67
27
13
20
25
20
18
4
5
12
P( 58 )
P( 52 )
P( 46 )
P( 41 )
P( 36 )
P( 31 )
P( 26 )
P( 21 )
P( 16 )
P( 11 )
R ( 5)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
2
11
7
28
14
6
11
P(59)
P(50)
P(44)
P(39)
P(33)
P(28)
P(23)
877 . 4289
892 . 4471
901 . 8416
909 . 2732
917 . 7164
924 . 3570
930 . 6163
18
- 4
44
10
- 17
38
0
P( 56 )
P( 48 )
P( 43 )
P( 37 )
P( 32 )
P( 27 )
P( 22 )
d
-
25
19
18
4
31
- 8
31
- 69
- 70
4
7
- 2
1
- 9
1
20
-
-
d
Line
Observed
13
10
12
- 8
R (54 )
R (59 )
R (65 )
R (75 )
491 . 4458
493 . 1225
494 . 8244
496 . 8949
1
16
20
3
- 3
29
5
- 5
- 29
- 4
- 16
- 10
15
P( 31 )
P( 20 )
P( 14 )
R (18 )
R (24 )
R (29 )
R (34 )
R (40 )
R (46 )
R (53 )
R (59 )
R (64 )
R (70 )
424 . 0318
435 . 1216
440 . 8130
467 . 2810
471 . 1562
474 . 1533
476 . 9342
479 . 9839
482 . 7126
485 . 4837
487 . 5006
488 . 9268
490 . 3209
( 2, 0 ) Band
901 . 8008
915 . 2147
924 . 6794
932 . 1704
943 . 3911
949 . 9176
957 . 2425
966 . 1426
986 . 7172
990 . 3859
992 . 9800
995 . 1554
996 . 9061
998 . 2240
999 . 1118
999 . 5702
11
9
- 3
- 3
9
24
5
- 4
12
15
- 9
1
18
- 7
- 22
7
P( 56 )
P( 48 )
P( 42 )
P( 37 )
P( 29 )
P( 24 )
P( 18 )
P( 8 )
R (13 )
R (19 )
R (24 )
R (29 )
R (34 )
R (39 )
R (44 )
R (49 )
903 . 5280
916 . 8269
926 . 2085
933 . 6280
944 . 7268
951 . 1761
958 . 4110
969 . 2255
987 . 3713
990 . 9372
993 . 4503
995 . 5395
997 . 2027
998 . 4380
999 . 2394
999 . 6129
( 3, 1 ) Band
889 . 5500
899 . 6902
909 . 3325
916 . 9733
924 . 2558
931 . 1757
937 . 7147
943 . 8794
949 . 6663
955 . 0641
970 . 4632
974 . 7844
977 . 9331
980 . 6682
982 . 9875
984 . 8844
986 . 3568
987 . 4043
988 . 0185
15
1
25
3
9
44
8
- 10
12
13
29
19
3
- 6
5
2
- 5
10
- 12
P( 57 )
P( 51 )
P( 45 )
P( 40 )
P( 35 )
P( 30 )
P( 25 )
P( 20 )
P( 15 )
P( 10 )
R (7 )
R (12 )
R (17 )
R (22 )
R (27 )
R (32 )
R (37 )
R (42 )
R (47 )
891 . 2750
901 . 3291
910 . 8890
918 . 4573
925 . 6684
932 . 5107
938 . 9768
945 . 0689
950 . 7774
956 . 0960
971 . 9683
975 . 4470
978 . 5134
981 . 1661
983 . 4017
985 . 2137
986 . 6005
987 . 5629
988 . 0918
-
P( 54 )
P( 47 )
P( 42 )
P( 36 )
P( 31 )
P( 26 )
P( 21 )
885 . 9095
897 . 2045
904 . 8559
913 . 5622
920 . 4156
926 . 9033
933 . 0183
( 4, 2 ) Band
882 . 5559
895 . 6340
903 . 3537
912 . 1459
919 . 0731
925 . 6367
931 . 8241
d
-
-
-
10
5
9
3
15
9
3
Line
Observed
7
14
13
13
R ( 55 )
R ( 60 )
R ( 66 )
491 . 7993
493 . 4300
495 . 0747
-
-
6
17
0
- 6
- 5
- 1
- 9
- 3
- 4
- 7
- 1
27
10
P(30)
P(19)
R ( 12 )
R ( 19 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 41 )
R ( 47 )
R ( 55 )
R ( 60 )
R ( 65 )
R ( 71 )
425 . 0746
436 . 0862
463 . 1098
467 . 9479
471 . 7722
474 . 7265
477 . 4642
480 . 4602
483 . 1360
486 . 1938
487 . 8038
489 . 1798
490 . 5157
4
4
19
- 4
- 8
- 6
- 11
- 12
- 2
1
- 4
- 7
- 34
27
3
14
30
14
14
18
40
22
- 1
7
3
0
9
- 4
47
P(52)
P(47)
P(41)
P(35)
P(28)
P(23)
P(16)
P(5 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
910 . 2881
918 . 4256
927 . 7225
936 . 4912
946 . 0468
952 . 4198
960 . 6979
972 . 1646
988 . 6272
991 . 4745
993 . 9033
995 . 9063
997 . 4851
998 . 6336
999 . 3509
18
27
18
- 11
10
18
- 7
8
17
5
20
15
2
1
15
9
- 2
19
5
P(56)
P(50)
P(44)
P(39)
P(34)
P(29)
P(24)
P(19)
P(14)
P(9 )
R ( 8)
R ( 13 )
R ( 18 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
892 . 9894
902 . 9594
912 . 4290
919 . 9282
927 . 0654
933 . 8334
940 . 2279
946 . 2426
951 . 8726
957 . 1146
972 . 6957
976 . 0935
979 . 0786
981 . 6466
983 . 7970
985 . 5243
986 . 8287
987 . 7018
988 . 1455
8
11
18
16
- 9
- 1
21
P(53)
P(46)
P(41)
P(35)
P(30)
P(25)
P(20)
887 . 5640
898 . 7650
906 . 3422
914 . 9625
921 . 7440
928 . 1556
934 . 1916
d
-
-
-
-
-
d
14
13
14
-
-
5
7
26
18
12
9
9
74
20
10
18
3
11
13
25
53
2
- 12
- 12
0
8
19
22
17
20
8
14
14
2
4
- 2
16
2
0
-
-
1
14
10
15
4
- 4
- 18
467
FT IR spectra of L iI
Table 2.
Line
Observed
P( 19 )
P( 11 )
R ( 5)
R ( 10 )
R ( 15 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
935 . 3523
944 . 0980
959 . 3582
962 . 9700
966 . 1649
968 . 9555
971 . 3321
973 . 2896
974 . 8294
975 . 9474
976 . 6357
P( 48 )
P( 43 )
P( 38 )
P( 33 )
P( 28 )
P( 23 )
P( 18 )
P( 13 )
R ( 13 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 40 )
R ( 46 )
P( 60 )
P( 43 )
P( 37 )
P( 31 )
P( 24 )
P( 16 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
a
Continued
d
Line
Observed
d
Line
Observed
-
32
18
19
59
- 1
2
5
- 11
3
29
19
P(17)
P(9 )
R ( 6)
R ( 11 )
R ( 16 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
937 . 6350
946 . 1316
960 . 1121
963 . 6332
966 . 7561
969 . 4651
971 . 7562
973 . 6310
975 . 0872
976 . 1187
976 . 7225
13
5
18
- 37
0
12
- 8
- 11
10
22
22
P( 16 )
P( 8 )
R ( 7)
R ( 12 )
R ( 17 )
R ( 22 )
R ( 27 )
R ( 32 )
R ( 37 )
R ( 42 )
R ( 47 )
938 . 7503
947 . 1205
960 . 8473
964 . 2989
967 . 3308
969 . 9558
972 . 1646
973 . 9581
975 . 3275
976 . 2745
986 . 7929
885 . 2063
892 . 8587
900 . 1615
907 . 1018
913 . 6804
919 . 8879
925 . 7187
931 . 1747
953 . 8961
957 . 3552
959 . 7880
961 . 8106
963 . 4112
964 . 7736
965 . 5376
-
10
18
9
- 4
6
- 4
- 38
- 30
33
12
7
37
13
- 57
- 24
P(47)
P(42)
P(37)
P(32)
P(27)
P(22)
P(17)
R (5 )
R ( 14 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 41 )
R ( 47 )
886 . 7636
894 . 3480
901 . 5774
908 . 4457
914 . 9483
921 . 0836
926 . 8419
948 . 3744
954 . 5141
957 . 8751
960 . 2240
962 . 1615
963 . 6801
964 . 9502
965 . 6037
-
23
- 9
- 4
- 14
- 30
- 16
- 22
52
36
15
- 4
5
- 1
17
- 36
P( 46 )
P( 41 )
P( 36 )
P( 31 )
P( 26 )
P( 21 )
P( 16 )
R ( 8)
R ( 15 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 43 )
R ( 48 )
855 . 2885
882 . 4772
891 . 1238
899 . 2524
908 . 0723
917 . 2661
946 . 3932
948 . 8010
950 . 7981
952 . 3844
953 . 5496
954 . 3026
-
P(58)
P(42)
P(35)
P(30)
P(23)
R ( 13 )
R ( 20 )
R ( 25 )
R ( 30 )
R ( 35 )
R ( 40 )
R ( 45 )
858 . 6927
883 . 9591
893 . 8905
900 . 5554
909 . 2732
942 . 9669
946 . 9076
949 . 2358
951 . 1492
952 . 6494
953 . 7365
954 . 3925
16
26
4
- 2
- 11
- 12
- 7
18
8
8
47
- 29
P( 51 )
P( 41 )
P( 34 )
P( 29 )
P( 22 )
R ( 14 )
R ( 21 )
R ( 26 )
R ( 31 )
R ( 36 )
R ( 41 )
R ( 46 )
10
36
8
9
- 7
9
- 10
- 6
- 4
26
10
62
( 5, 3 ) Band
888 . 3049
895 . 8232
902 . 9807
909 . 7780
916 . 2098
922 . 2702
927 . 9509
950 . 5643
955 . 1114
958 . 3759
960 . 6450
962 . 4991
963 . 9331
963 . 2375
965 . 6549
( 6, 4 ) Band
870 . 1773
885 . 4205
895 . 2510
901 . 8416
910 . 4582
943 . 5797
947 . 4035
949 . 6500
951 . 4767
952 . 8999
953 . 8961
954 . 4787
Line
Observed
4
29
- 7
53
2
1
- 9
14
13
30
32
P( 15 )
P( 7 )
R (8 )
R (13 )
R (18 )
R (23 )
R (28 )
R (33 )
R (38 )
R (43 )
939 . 8534
948 . 0990
961 . 5692
964 . 9326
967 . 8879
970 . 4320
972 . 5575
974 . 2629
975 . 5509
986 . 4120
57
0
1
7
20
30
5
28
- 3
- 8
1
8
- 7
15
- 26
P( 45 )
P( 40 )
P( 35 )
P( 30 )
P( 25 )
P( 20 )
P( 15 )
R (10 )
R (16 )
R (22 )
R (27 )
R (32 )
R (37 )
R (44 )
889 . 8403
897 . 2855
904 . 3760
911 . 0937
917 . 4505
923 . 4326
929 . 0408
951 . 9410
955 . 6954
958 . 8634
961 . 0508
962 . 8195
964 . 1714
965 . 3556
21
24
11
36
25
2
27
2
50
12
21
12
P( 50 )
P( 39 )
P( 33 )
P( 28 )
P( 19 )
R (15 )
R (22 )
R (27 )
R (32 )
R (37 )
R (42 )
R (47 )
871 . 7609
888 . 3049
896 . 5938
903 . 1189
913 . 9338
944 . 1761
947 . 8894
950 . 0485
951 . 7987
953 . 1324
954 . 0475
954 . 5450
d
-
-
-
d
Line
Observed
d
27
10
- 4
- 11
- 9
10
2
- 15
16
26
P(14)
R ( 3)
R ( 9)
R ( 14 )
R ( 19 )
R ( 24 )
R ( 29 )
R ( 34 )
R ( 39 )
R ( 44 )
940 . 9354
957 . 8018
962 . 2734
965 . 5605
968 . 4304
970 . 8906
972 . 9314
974 . 5545
975 . 7582
976 . 5337
-
8
17
- 16
29
1
9
- 9
- 7
28
35
-
P(44)
P(39)
P(34)
P(29)
P(24)
P(19)
P(14)
R ( 11 )
R ( 17 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 45 )
891 . 3533
898 . 7302
905 . 7446
912 . 3931
918 . 6770
924 . 5858
930 . 1156
952 . 6064
956 . 2650
959 . 3351
961 . 4362
963 . 1245
964 . 3902
965 . 4490
-
P(46)
P(38)
P(32)
P(27)
P(18)
R ( 16 )
R ( 23 )
R ( 28 )
R ( 33 )
R ( 38 )
R ( 43 )
R ( 48 )
877 . 9748
889 . 7195
897 . 9343
904 . 3760
915 . 0588
944 . 7579
948 . 3539
950 . 4332
952 . 0978
953 . 3512
954 . 1836
954 . 5904
48
15
15
- 44
17
39
10
10
- 6
24
31
- 7
-
10
22
71
9
10
- 15
- 6
- 14
- 14
0
19
6
9
12
-
7
60
- 59
- 12
32
12
17
- 8
4
3
- 2
22
47
10
17
- 6
6
- 1
- 16
- 24
- 7
15
0
17
- 1
- 67
Observed± calculated di€ erences ( columns labelled d ) are in units of 0 . 0001 cm - 1 .
Table 3.
Mass-dependent Dunham constants ( in cm
6
Y 10
Y 20
10 2 Y 30
5
10 Y 40
Y 01
3
10 Y 11
10 5 Y 21
8
10 Y 31
10 6 Y 02
9
10 Y 12
11
10 Y 22
12
10 Y 03
10 14 Y 13
LiI
534 . 586 010( 165 )
- 3 . 303 512( 109 )
1 . 248 72(284 )
- 2 . 911( 251 )
0 . 513 057 887(313 )
- 5 . 090 024( 102 )
2 . 005 65(312 )
- 1 . 699( 330 )
- 1 . 891 104( 186 )
8 . 548 0(234 )
4 . 489( 433 )
2 . 051 3(380 )
7
-1
).
LiI
496 . 848 333( 62 )
- 2 . 853 706 3( 265 )
1 . 006 418( 458 )
- 2 . 488 6(275)
0 . 443 175 934(334 )
- 4 . 086 252 0( 422 )
1 . 499 781( 681 )
- 1 . 383 5(469)
- 1 . 410 476( 135 )
5 . 844 5(123 )
2 . 514 4(684 )
1 . 221 6(162 )
1 . 492( 138 )
The ® nal term in equation (5 ) is a correctio n term for
the Li nucleus which takes into account the Born±
Oppenheimer breakdown and hom ogeneo us non-adiabatic mixing from distant S electronic states, and is
represen ted by the power series expansion
U Li ( R ) =
å
Li
ui ( R
-
Re )
i
( 10 )
i= 1
Similarly, e€ ects from the rotational motion, namely Jdependent Born± Oppenheimer break down and heterogeneous non-adiabatic mixing from distant P electronic
states, are accounted for by the q ( R ) term in equation
(3 ) , where
468
B. Guo et al.
Figure 2.
The
parameterized
Born±
Oppenheimer potential of LiI plotted
using the parameters obtained by ® tting the experimental data: solid line,
this work; dashed line, reference [9].
Table 4.
U10
U20
U30
3
10 U40
U01
2
10 U11
10 4 U21
6
10 U31
5
10 U02
7
10 U12
9
10 U22
10
10 U32
D
D
D
D
D
Li
10
Li
01
Li
11
Li
02
Li
03
Mass-independent Dunham constants (in cm
1281 . 100 71( 39 )
- 18. 972 779(150)
0. 172 534 8(703 )
- 1. 100 9( 114 )
2. 946 333 19( 853 )
- 7. 004 429 (125)
6. 618 50( 229 )
- 1. 254 7( 611 )
- 6. 233 601 31
6. 625 218 29
9. 367 163 45
- 4. 593 862 55
0. 013 65( 349 )
0. 417 4( 340 )
0. 638( 197 )
4. 145( 502 )
377 . 5( 536 )
q( R ) =
1
M Li
å
10
10 U03
11
10 Y 13
13
10 U23
15
10 U04
17
10 U14
17
10 U24
10 19 U05
22
10 U15
24
10 U06
25
10 U16
29
10 U07
33
10 U08
qLi i ( R
-
-
1
).
3 . 655 535 95
1 . 250 763 30
4 . 870 216 02
5 . 617 536 79
9 . 667 560 20
1 . 836 821 53
1 . 633 533 43
1 . 956 016 80
1 . 835 139 20
5 . 813 369 17
5 . 407 320 41
3 . 018 234 98
Table 5.
Derived parameter values f or the modi® ed Morse
potential.
D e cm
Â
Re A
b
0
b
1
b
2
b
3
b
4
b
5
-1
Li
-1
-1
u 1 cm u AÊ
Li
-1 Ê -2
u 2 cm u A
Li
-1
-3
u 3 cm u AÊ
Li
1
q 1 u AÊ
Ê -2
q Li
2 uA
6
M ( Li ) u
7
(
M Li ) u
127
M ( I) u
-
Re ) .
i
( 11 )
i= 1
Our ® tting procedure is similar to the method reported
by Coxon and Hajigeorgiou [9, 15] and is described in
greater detail elsewhere [10]. R esults of the potential ® t
are given in table 5, where the value of D e was ® xed to
that given in Huber and Herzberg [16] and the atom ic
masses were taken from Mills et al. [17]. In ® gure 2,
288 39.0
2 . 391 981 00(338 )
3 . 394 922 75(595 )
2 . 086 096 6(992 )
2 . 919 149(628 )
9 . 036 44( 578 )
7 . 7780( 470 )
26 . 707(450 )
13 . 63( 107 )
- 21 . 31( 178 )
10 . 75( 126 )
- 0 . 000 264 5(625)
0 . 000 573 3(956 )
6 . 015 121 4
7 . 016 003 0
126 . 904 473
we plot the potential using equation (6 ) and the Born±
Oppenheimer parameters in table 5, and compare it with
the potential reported by Coxon and Hajigeorgiou [9].
4.
Conclusion
Fourier transf orm infrared emission spectroscopy is a
very powerful technique for the study of alkali halide
molecules. Our new infrared vibration± rotation data for
the two isotopomers, 7 LiI and 6 LiI, were used to derive a
FT IR spectra of L iI
set of improved spectroscopic constants as well as the
parameters for a modi® ed Morse potential for the
ground state.
The authors thank the Natural Sciences and Engineering R esearch Council of Canada (NSER C ) for
support.
References
[1] H onig , A ., M andel , M ., Stitch, M . L., and Townes,
C. H ., 1954, Phys. Rev., 96, 629.
[2] R usk , J. L., and G ordy, W ., 1962, Phys. Rev., 127, 817.
[3] B reivogel , F. W ., J r ., H ebert, A . J., and Street, K .,
J r ., 1965, J. chem . Phys., 42, 1555.
[4] J acobson, A . R ., and R amsey, N ., 1976, J. chem . Phys.,
65, 1211.
[5] S chaefer , S. H ., B ender , D ., and Tiemann, E., 1986,
Chem . Phys., 102, 165.
[6] ( a) B erry, R . S., and (b ) D yke, T. R ., 1979, Alkali
Halide V apors, edited by P. Davidovits and D. L.
McFadden (New Y ork: A cadem ic Press )
469
[7] K lemperer , W . A ., N orris, W . G ., B uchler , A ., and
E mslie, A . G ., 1960, J. chem . Phys., 33, 1534.
[8] Thompson, G., M aki, A . G ., and W eber, A ., 1986,
J. m olec. S pectrosc., 118, 540
[9] C oxon, J. A ., and H ajigeorgiou , P. G . , 1992, Chem .
Phys., 167, 327.
[10] H edderich, H . G ., D ulick, M ., and B ernath, P. F.,
1993, J. chem . Phys., 99, 8363.
[11] M untianu , A ., G uo, B., and B ernath, P. F., 1996,
J. m olec. S pectrosc., 176, 274.
[12] G uelachvili, G ., and R ao, K . N ., 1986, Handbook of
Inf rared Standards ( Orlando, FL: A cadem ic Press ) .
[13] P etersen, F. R ., B eaty, E. C., and P ollock , C. R .,
1983, J. m olec. Spectrosc., 102, 112.
[14] D unham, J. L., 1932, Phys. Rev, 41, 721.
[15] C oxon, J. A ., and H ajigeorgiou , P. G ., 1992, Can. J.
Phys., 70, 40.
[16] H uber, K . P., and H erz berg , G ., 1979, Constants of
D iatom ic Molecules ( New Y ork: Van NostrandR einhold ) .
[17] M ills, I., et al., 1989, IUPAC Q uantities, Units and
S ym bols in Physical Chem istry ( Oxf ord: Blackwell) .