1.4 Rules of Exponents

Section: 1.4
Date:
Use the rules of exponents to simply expressions.
Objective
Zero Exponents
For any real number π‘Ž: π‘Ž0 = 1.
Negative Exponents For any real numbers π‘Ž and 𝑛: π‘Žβˆ’π‘› = 1 or 1 = π‘Žπ‘› .
π‘Žπ‘›
π‘Žβˆ’π‘›
Rules for Exponents
Examples
What is the simplified form of each expression?
1
a. 5π‘Ž3 𝑏 βˆ’2
b. π‘₯ βˆ’5
Practice
What is the simplified form of each expression?
a.
π‘›βˆ’5
π‘š2
b.
2
π‘₯0
Multiplying Powers
with the Same Base
Examples
For any real numbers π‘Ž, π‘š, and 𝑛: π‘Žπ‘š π‘Žπ‘› = π‘Žπ‘š+𝑛 .
Practice
What is the simplified form of each expression?
a. 5π‘₯ 4 βˆ™ π‘₯ 9 βˆ™ 3π‘₯ βˆ’2
b. βˆ’4𝑐 3 βˆ™ 7𝑑 2 βˆ™ 2𝑐 βˆ’3
Raising a Power to
a Power
Examples
For any real numbers π‘Ž, π‘š, and 𝑛: (π‘Žπ‘š )𝑛 = π‘Žπ‘šπ‘›
What is the simplified form of each expression?
a. 4𝑧 5 βˆ™ 9𝑧 βˆ’12
b. 2π‘Ž βˆ™ 9𝑏 4 βˆ™ 3π‘Ž2
What is the simplified form of each expression?
a. (𝑛4 )7
Practice
What is the simplified form of each expression?
a. (𝑝4 )5
Raising a Product
to a Power
2 1
b. (π‘₯ 3 )2
1 1
b. (𝑝2 )4
For any real numbers π‘Ž, 𝑏, π‘š, and 𝑛: (π‘π‘Žπ‘š )𝑛 = 𝑏 𝑛 π‘Žπ‘šπ‘› .
Examples
What is the simplified form of each expression?
1
2
b. (𝑛2 )10 (4π‘šπ‘›βˆ’3 )3
a. (7π‘š9 )3
Practice
What is the simplified form of each expression?
a. (2𝑧)βˆ’4
b. (π‘₯ βˆ’2 )2 (3π‘₯𝑦 5 )4
Dividing Powers
with the Same Base
For any real numbers π‘Ž, π‘š, and 𝑛:
Examples
What is the simplified form of each expression?
a.
Practice
π‘š2 𝑛 4
π‘š5 𝑛 3
π‘Žπ‘š
π‘Žπ‘›
= π‘Žπ‘šβˆ’π‘› .
5
b.
π‘₯2
π‘₯2
What is the simplified form of each expression?
a.
π‘₯ 4 𝑦 βˆ’1 𝑧 8
π‘₯ 4 𝑦 βˆ’5 𝑧
3
b.
𝑦4
1
𝑦2
π‘Žπ‘š 𝑝
Raising a Quotient
to a Power
For any real numbers π‘Ž, 𝑏, π‘š, 𝑛, and 𝑝: ( 𝑏𝑛 ) =
Example and
Practice
What is the simplified form of each expression?
2
𝑧3
3
a. ( 5 )
3
π‘Ž4
4
b. (π‘Ž5 )
π‘Žπ‘šπ‘
𝑏 𝑛𝑝
.