C. HECKMAN 265 SOLUTIONS DERIVATIVE MASTERY 1A √ (1) x 3 5x − 3 √ 1 Solution: x · (5x − 3)−2/3 · 5 + 3 5x − 3 3 (2) x2 sec(4x) Solution: x2 · sec(4x) tan(4x) · 4 + sec(4x) · 2x (3) y = 1 + cos x sin x Solution: 2 · 2 1 + cos x sin x sin x · (− sin x) − (1 + cos x) · cos x · sin2 x (4) 83x−4 Solution: 83x−4 · ln 8 · 3 (5) x2 (8 − 3x) 7/4 7 Solution: x2 · (8 − 3x)3/4 · (−3) + (8 − 3x)7/4 · 2x 4 1 (6) (x2 + 1)(csc x − 5x + 1) Solution: (x2 + 1)(− csc x cot x − 5) + (csc x − 5x + 1)(2x) (7) 4 e−x + 4 Solution: −4 · (−e−x ) (e−x + 4)2 (8) log7 x7 + 8 Solution: (x7 1 · 7x6 + 8) · ln 7 (9) arcsin(4x2 + 8x − 9) 1 Solution: p · (8x + 8) 2 1 − (4x + 8x − 9)2 (10) √ 1 + cos x Solution: 1 (1 + cos x)−1/2 · (− sin x) 2 2 (11) 5x7 − 3x3/7 + 8x−1/2 Solution: 5 · 7x6 − 3 · (12) 3 −4/7 −1 −3/2 x x +8· 7 2 tan(ax) tan(bx) (where a and b are constants) Solution: tan(bx) sec2 (ax) · a − tan(ax) · sec2 (bx) · b tan2 (bx) (13) cot(ex ) Solution: − csc2 (ex ) · ex (14) ln 1 x3 + ln e Solution: Note that ln e is a constant, and that ln easier. −3 · 1 x (15) y = e10x sin(20x) Solution: e10x · cos(20x) · 20 + sin(20x) · e10x · 10 3 1 x3 = ln x−3 = −3 ln x. This made the problem (16) 3 cos(5x) + 3 sin(x9 ) Solution: 3 · − sin(5x) · 5 + 3 · cos(x9 ) · 9x8 (17) (4x + 5) π Solution: π(4x + 5)π−1 · 4 (18) arctan(4ex ) Solution: (19) Find 1 · 4ex 1 + (4ex )2 dy where dx arccos (x − 2y) + cos (x + 2y) = 1. Solution: d d [arccos (x − 2y) + cos (x + 2y)] = [1] dx dx −1 dy dy p · 1−2· − sin(x + 2y) · 1 + 2 · =0 2 dx dx 1 − (x − 2y) dy −1 2 dy p − sin(x + 2y) − 2 sin(x + 2y) · =0 +p · 2 2 dx 1 − (x − 2y) 1 − (x − 2y) dx 2 p 1 − (x − 2y)2 · dy dy 1 − 2 sin(x + 2y) · =p + sin(x + 2y) dx dx 1 − (x − 2y)2 1 dy = dx p p (20) Find dy where dx Solution: 1 − (x − 2y)2 2 1 − (x − 2y)2 ex+xy + 4y 2 = x. d x+xy d e + 4y 2 = [x] dx dx dy dy ex+xy · 1 + 1 · y + x · + 8y · =1 dx dx dy dy ex+xy + ex+xy · y + ex+xy · x · + 8y · =1 dx dx dy dy ex+xy · x · + 8y · = 1 − ex+xy − ex+xy · y dx dx dy 1 − ex+xy − ex+xy · y = dx ex+xy · x + 8y 4 + sin(x + 2y) − 2 sin(x + 2y) C. HECKMAN 265 SOLUTIONS DERIVATIVE MASTERY 1B (1) (2) 1 ln(3x − 2x3 ) 3 Solution: 1 1 · (3 − 6x2 ) · 3 3x − 2x3 2 cos x 1 − sin x Solution: 2 · (3) eax ln(b + y) cos x 1 − sin x (1 − sin x)(− sin x) − cos x(− cos x) · (1 − sin x)2 (where a and b are constants) Solution: The intended answer was eax · lem). The answer eax · 1 + ln(b + x) · eax · a (with an x in the original probb+x 1 dy · + ln(b + y) · eax · a was also accepted. b + y dx (4) −3 arctan(5 − x2 ) Solution: −3 · (5) (2xπ + 8) 1 · (−2x) 1 + (5 − x2 )2 3 Solution: 3(2xπ + 8)2 · 2πxπ−1 1 (6) x2 (3x + 2) 1/4 1 Solution: x2 · (3x + 2)−3/4 · 3 + (3x + 2)1/4 · 2x 4 (7) log2 2x3 + 9 Solution: (2x3 1 · 6x2 + 9) ln 2 (8) x3 tan(2x) Solution: x3 sec2 (2x) · 2 + tan(2x) · 3x2 (9) arccos(9x + 7) −1 Solution: p ·9 1 − (9x + 7)2 (10) 2 3−e x 3 Solution: 2 (3 − e)x2−e 3 2 √ (11) x 5 4x + 7 √ 1 Solution: x · (4x + 7)−4/5 · 4 + 5 4x + 7 5 (12) arcsin(7x3 − 5) 1 Solution: p · 7 · 3x2 1 − (7x3 − 5)2 (13) 9x8/3 + 7x3 − 8x−5/2 Solution: 9 · 8 5/3 −5 −7/2 x + 7 · 3x2 − 8 · x 3 2 (14) sec(sec(x2 )) Solution: sec(sec x2 ) tan(sec x2 ) · sec(x2 ) tan(x2 ) · 2x (15) ex + e−x e Solution: ex − e−x e 3 2 (16) 5x −8 2 Solution: 5x (17) √ −8 · ln 5 · 2x sin x Solution: 1 (sin x)−1/2 · cos x 2 (18) (3x5 + 2x3 − 7x + 9)(2x3 + 8x2 − 5x − 7) Solution: (3x5 + 2x3 − 7x + 9)(6x2 + 16x − 5) + (2x3 + 8x2 − 5x − 7)(15x4 + 6x2 − 7) (19) Find dy where dx 2 csc x2 y 3 − 5x4 y 3 = 2. Solution: d d [2 csc x2 y 3 − 5x4 y 3 ] = [2] dx dx dy + y 3 · 2x 2 · − csc(x2 y 3 ) cot(x2 y 3 ) · x2 · 3y 2 · dx 4 2 dy 3 3 − 5x · 3y · + y · 20x = 0 dx dy + 2 · − csc(x2 y 3 ) cot(x2 y 3 ) · y 3 · 2x −2 csc(x2 y 3 ) cot(x2 y 3 ) · x2 · 3y 2 · dx dy −5x4 · 3y 2 · − y 3 · 20x3 = 0 dx dy dy −2 csc(x2 y 3 ) cot(x2 y 3 ) · x2 · 3y 2 · − 5x4 · 3y 2 · = 2 · csc(x2 y 3 ) cot(x2 y 3 ) · y 3 · 2x + y 3 · 20x3 dx dx dy 2 · csc(x2 y 3 ) cot(x2 y 3 ) · y 3 · 2x + y 3 · 20x3 = dx −2 csc(x2 y 3 ) cot(x2 y 3 ) · x2 · 3y 2 − 5x4 · 3y 2 (20) Find dy where dx y 8 − cot (x + 8y) = 2. Solution: d 8 d [y − cot (x + 8y)] = [2] dx dx dy dy 8y 7 · − − csc2 (x + 8y) · 1 + 8 · =0 dx dx dy dy 8y 7 · + csc2 (x + 8y) + csc2 (x + 8y) · 8 · =0 dx dx dy dy 8y 7 · + csc2 (x + 8y) · 8 · = − csc2 (x + 8y) dx dx dy − csc2 (x + 8y) = dx 8y 7 + csc2 (x + 8y) · 8 4
© Copyright 2026 Paperzz