the valence electron excitations and the optical properties of

THE VALENCE ELECTRON EXCITATIONS AND
THE OPTICAL PROPERTIES OF ADSORBED
ATOMS AND MOLECULES ON METAL SURFACES
E. Burstein, A. Brotman, P. Apell
To cite this version:
E. Burstein, A. Brotman, P. Apell.
THE VALENCE ELECTRON EXCITATIONS
AND THE OPTICAL PROPERTIES OF ADSORBED ATOMS AND MOLECULES ON
METAL SURFACES. Journal de Physique Colloques, 1983, 44 (C10), pp.C10-429-C10-439.
<10.1051/jphyscol:19831086>. <jpa-00223544>
HAL Id: jpa-00223544
https://hal.archives-ouvertes.fr/jpa-00223544
Submitted on 1 Jan 1983
HAL is a multi-disciplinary open access
archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.
L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.
JOURNAL DE PHYSIQUE
Colloque C10, supplkrnent a u n012, Tome 44, d6cembre 1983
page Ci0-429
THE VALENCE ELECTRON E X C I T A T I O N S AND THE O P T I C A L P R O P E R T I E S OF
ADSORBED ATOMS AND MOLECULES ON METAL SURFACES*
E . B u r s t e i n , A. Brotman and P . Apellf
Physics Department and Laboratory for Research on t h e Structure of Matter,
University of Pennsy Zvania, PhiZadeZphia, PA 19204, U.S. A.
-
~ 6 s u m 6 Nous p r e s e n t o n s une r e v u e s u r l e s e x c i t a t i o n s d e s e l e c t r o n s
d e v a l e n c e q u i j o u e n t un r 8 1 e d a n s l e s p r o p r i d t d s o p t i q u e s , p a r exemple
d i f f u s i o n Raman, luminescence, e t c . , d e s atomes e t d e s mole'cules a d s o r b &
Les p r o p r i d t 6 s o p t i q u e s elles-m&mes f o u r n i s s e n t un moyen pour d t u d i e r
l a s t r u c t u r e i l e c t r o n i q u e d e s complexes a d s o r b a t - s u b s t r a t .
-
Abstract
We p r e s e n t a n overview o f t h e v a l e n c e e l e c t r o n e x c i t a t i o n s
t h a t p l a y a r o l e i n t h e o p t i c a l p ~ o p e r t i e seg., Raman s c a t t e r i n g , luminescence, e t c . , o f adsorbed atoms and molecules. The o p t i c a l p r o p e r t i e s
c a n themselves be used a s s u r f a c e - s e n s i t i v e s p e c t r o s c o p i c probes o f
t h e e l e c t r o n i c s t r u c t u r e o f t h e a d s o r b a t e - s u b s t r a t e complexes.
INTRODUCTORY REMARKS
The l a c k o f i n f o r m a t i o n about t h e e l e c t r o n i c s t r u c t u r e and, s p e c i f i c a l l y about
t h e e n e r g i e s , wavefunctions and widths o f v i r t u a l bound s t a t e s and bonding and
a n t i b o n d i n g s t a t e s of t h e adsorbed atoms and m o l e c u l e s , h a s been a major b a r r i e r
t o e f f o r t s t o e l u c i d a t e t h e key mechanisms, o t h e r t h a n s u r f a c e roughness enhanced
EM f i e l d s , t h a t p l a y a r o l e i n t h e i r o p t i c a l p r o p e r t i e s , e g . , Raman s c a t t e r i n g ,
second harmonic g e n e r a t i o n , e t c . There h a s been a tendency i n t h e p a s t t o view
t h e m e t a l s u b s t r a t e and t h e adsorbed molecules a s s e p a r a t e e n t i t i e s , a l b e i t
p e r t u r b e d by e a c h o t h e r ' s p r e s e n c e , and t o a t t r i b u t e t h e enhanced o p t i c a l phenomena
t o enhancement by t h e m e t a l s u b s t r a t e . Thus, t h e enhanced Raman s c a t t e r i n g
by t h e adsorbed molecules on Ag h a s been termed l l s u r f a c e enhanced Raman s c a t t e r i n g " .
It i s now c l e a r , from a v a r i e t y of e x p e r i m e n t a l e v i d e n c e , t h a t t h e Raman s c a t t e r i n g
c r o s s - s e c t i o n s o f t h e adsorbed molecules i s due, i n p a r t , t o c o n t r i b u t i o n s from
" i n t e r m o l e c u l a r t t (e.g., c h a r g e t r a n s f e r ) e l e c t r o n i c e x c i t a t i o n s o f t h e adsorbed
atoms and m o l e c u l e s , t h a t a r e a b s e n t i n t h e f r e e atoms and m o l e c u l e s /1,2,3/.
The a p p r o p r i a t e p o i n t o f view i s t h a t t h e o p t i c a l p r o p e r t i e s o f t h e adsorbed
atoms and m o l e c u l e s a r e t h o s e o f a d s o r b a t e - s u b s t r a t e complexes whose "intermolecu l a r " and " i n t r a m ~ l e c u l a r ' e~x c i t a t i o n s i n t e r a c t w i t h t h e e l e c t r o n i c e x c i t a t i o n s
of t h e underlying metal.
The enhancement o f t h e macroscopic and l o c a l EM f i e l d s a t a n A-S complex by
s u r f a c e roughness, image d i p o l e s , e t c . , d o e s correspond t o a n enhancement by
t h e m e t a l s u b s t r a t e . On t h e o t h e r hand, t h e enhanced o p t i c a l r e s p o n s e a r i s i n g
from " i n t e r m o l e c u l a r l t e x c i t a t i o n s i s n o t a s u r f a c e enhancement. It i s simply
t h e m a n i f e s t a t i o n o f t h e f o r m a t i o n o f a n A-S complex. We n o t e i n t h i s c o n n e c t i o n
t h a t , t o o b s e r v e t h e Raman s c a t t e r i n g (RS) by a monolayer, o r submonolayer,
o f adsorbed molecules o n a metal s u b s t r a t e i n t h e absence o f any " s u r f a c e enhancement" o f t h e i n c i d e n t and s c a t t e r e d EM f i e l d s , i t is advantageous t o c a r r y o u t
t h e RS measurements under resonance enhanced c o n d i t i o n s /4,5/ ( e g . , t o u s e e x c i t a t i o n wavelengths a t which i n t r a m o l e c u l a r o r i n t e r m o l e c u l a r r e s o n a n c e s o c c u r ) a n d ,
f o r t h i s p u r p o s e , t o extend t h e e x c i t a t i o n wavelengths from t h e v i s i b l e i n t o
t h e u l t r a v i o l e t and i n f r a r e d ,
Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:19831086
JOURNAL DE PHYSIQUE
BONDING, ELECTRONIC STRUCTURE AND VALENCE ELECTRON EXCITATIONS
To a d e q u a t e l y understand t h e o p t i c a l p r o p e r t i e s o f adsorbed atoms and molecules
on metal s u b s t r a t e s , one needs i n f o r m a t i o n about t h e e l e c t r o n i c s t r u c t u r e and,
i n p a r t i c u l a r , i n f o r m a t i o n about t h e e l e c t r o n i c e x c i t a t i o n s , (eg., e n e r g i e s ,
w i d t h s , o s c i l l a t o r s t r e n g t h s , e t c . ) of t h e A-S complexes t h a t a r e formed.
The d e t e r m i n a t i o n o f t h e e l e c t r o n i c s t r u c t u r e of molecules adsorbed on metal
s u r f a c e s (and, t h e r e b y , t h e e l u c i d a t i o n of t h e bonding between a d s o r b a t e s and
s u b s t r a t e s ) h a s been a major o b j e c t i v e o f s u r f a c e p h y s i c i s t s and chemists, and
t h e r e h a s been c o n s i d e r a b l e experimental and t h e o r e t i c a l p r o g r e s s i n a t t a i n i n g
t h i s o b j e c t i v e f o r a number o f adsorbed molecules and metal s u b s t r a t e s /6/.
We p r e s e n t h e r e a n overview o f t h e bonding o f atoms and simple molecules a t
m e t a l s u r f a c e s and o f t h e e l e c t r o n i c s t r u c t u r e and e l e c t r o n i c e x c i t a t i o n s o f
t h e A-S complexes t h a t a r e formed. I n doing s o , we w i l l l i m i t o u r s e l v e s t o
i s o l a t e d , e.g., low coverage, a d s o r b a t e s on smooth metal s u r f a c e s i n u l t r a high
vacuum. Our primary o b j e c t i v e i s t o c l a r i f y t h e n a t u r e o f t h e valence e l e c t r o n
e x c i t a t i o n s t h a t p l a y a r o l e i n o p t i c a l phenomena e x h i b i t e d by adsorbed atoms
and molecules on m e t a l s u r f a c e s /7/.
The m e t a l s u b s t r a t e s f a l l q u a l i t a t i v e l y i n t o s e v e r a l groups. i ) Metals, s u c h
The
a s A l , Na and K , which do n o t have d-bands and a r e f r e e - e l e c t r o n - l i k e .
c o v a l e n t bonding of a d s o r b a t e s by t h e s , p e l e c t r o n s of t h e s e m e t a l s i s r e l a t i v e l y weak. i i ) Noble m e t a l s (eg., Ag, Cu and Au), whose d-bands l i e w e l l below
t h e Fermi l e v e l , f o r which t h e chemisorption of a d s o r b a t e s v i a t h e d e l e c t r o n s
i s only moderately s t r o n g . i i i ) T r a n s i t i o n m e t a l s (eg., N i , Pd, P t ) whose
d-bands o v e r l a p t h e Fermi l e v e l and, t h e r e b y , c o n t r i b u t e t o a s t r o n g c o v a l e n t
bonding o f a d s o r b a t e s .
The a d s o r b a t e s t o be d i s c u s s e d a l s o f a l l i n t o s e v e r a l groups. i ) simple aromatic
molecules, eg., benzene, p y r i d i n e , p y r a z i n e , e t c . i i ) Diatomic molecules,
eg., CO and N2.
i i i ) Atomic a d s o r b a t e s , eg., hydrogen, halogen, a l k a l i and
r a r e g a s atoms.
Aromatic Adsorbates
The aromatic molecules, eg., benzene, p y r i d i n e , e t c . , a r e chemisorbed on metal
s u r f a c e s v i a c o v a l e n t bonding o f t h e i r n e l e c t r o n s with t h e d e l e c t r o n s o f
t h e metal s u b s t r a t e , and g e n e r a l l y l i e f l a t on s u r f a c e . The c o v a l e n t bonding
o f benzene i s o n l y moderately s t r o n g , even i n t h e c a s e o f t r a n s i t i o n metal subs t r a t e s /8/.
I n t h e c a s e o f p y r i d i n e , t h e p l a n e of t h e adsorbed molecules may be i n c l i n e d ,
o r p e r p e n d i c u l a r , t o t h e s u r f a c e due t o c o v a l e n t bonding v i a t h e l o n e p a i r of
e l e c t r o n s of t h e N / 9 / . A s shown by Demuth and co-workers /10,11/ who have
determined t h e e l e c t r o n i c e x c i t a t i o n s o f p y r i d i n e , p y r a z i n e and benzene adsorbed
on A g ( l l 1 ) using e l e c t r o n energy l o s s measurements, t h e i n t r a m o l e c u l a r e x c i t a t i o n s
o f t h e adsorbed molecules a r e o n l y moderately s h i f t e d and broadened r e l a t i v e
t o t h o s e o f t h e f r e e molecules. Thus, t h e r e i s only a moderate mixing of t h e
a d s o r b a t e and s u b s t r a t e o r b i t a l s . The e l e c t r o n energy l o s s s p e c t r a f o r p y r i d i n e
and p y r a z i n e a l s o e x h i b i t a v e r y broad f e a t u r e with a n o n s e t a t - 2 t o 2.5 eV,
which Demuth e t a 1 i d e n t i f y a s corresponding t o A-S c h a r g e - t r a n s f e r e x c i t a t i o n s .
The energy l e v e l s o f f r e e p y r i d i n e molecules and o f p y r i d i n e molecules adsorbed
on pg, based on t h e e l e c t r o n i c e x c i t a t i o n s e n e r g i e s r e p o r t e d by Demuth e t a1
and on t h e valence e l e c t r o n binding e n e r g i e s obtained from photoemission measurements /12/, a r e shown s c h e m a t i c a l l y i n Fig. l a . The a f f i n i t y l e v e l o f f r e e
p y r i d i n e l i e s above t h e vacuum l e v e l (E ) i . e . , t h e n e g a t i v e p y r i d i n e i o n i s
u n s t a b l e . When adsorbed on a f r e e - e l e c t r o n - l i k e m e t a l s u b s t r a t e , t h e a f f i n i t y
l e v e l i s lowered by t h e coulomb i n t e r a c t i o n o f t h e n e g a t i v e p y r i d i n e i o n w i t h
i t s image charge i n t h e metal s u b s t r a t e . The a f f i n i t y l e v e l of t h e adsorbed
p y r i d i n e l i e s a t a n energy - 2 eV below EV and corresponds t o a " v i r t u a l bound
state".
An e l e c t r o n i n t h e a f f i n i t y l e v e l of t h e adsorbed p y r i d i n e is u n s t a b l e
with r e s p e c t t o t h e metal s u b s t r a t e and w i l l "hopff i n t o a n empty l e v e l of t h e
metal. We n o t e t h a t t h e e x c i t e d s t a t e s of t h e adsorbed ( n e u t r a l ) p y r i d i n e molecules
l i e above t h e Fermi l e v e l (E ) and a l s o correspond t o f f v i r t u a l bound s t a t e s " .
The f a c t , t h a t t h e observed F;intramolecularlpe l e c t r o n i c e x c i t a t i o n s o f adsorbed
p y r i d i n e a r e n o t a p p r e c i a b l y broadened, i n d i c a t e s t h a t t h e c o n t r i b u t i o n t o t h e
broadening from t h e decreased l i f e t i m e of t h e t f u n s t a b l e f le x c i t e d s t a t e s is n o t
l a r g e . There a r e two p o s s i b l e c h a r g e - t r a n s f e r e x c i t a t i o n s . One i n v o l v e s t h e
t r a n s i t i o n o f a n e l e c t r o n i n t h e metal below E t o t h e a f f i n i t y l e v e l of adsorbed
2 eV. The o t h e r
p y r i d i n e /13/ w i t h a n o n s e t energy ECT = EA* - F ~ Fe q u a l t o
i n v o l v e s t h e t r a n s i t i o n o f a n e l e c t r o n from t h e ground s t a t e o f adsorbed p y r i d i n e
t o a n empty l e v e l above EF i n t h e s u b s t r a t e ( a p r o c e s s which corresponds t o
photoemission from t h e a d s o r b a t e i n t o t h e metal s u b s t r a t e ) w i t h a n o n s e t energy
ECT = EF
EI* e q u a l t o
3 eV.
-
-
-
FREE
ADSORBED
co
CO
(b)
FREE
PYRlDlNE
ADSORBED
PYRlDlNE
(a 1
Fig. 1. Schematic energy l e v e l diagram f o r ( a ) p y r i d i n e
adsorbed on Ag and (b) CO adsorbed on N i .
Diatomic Adsorbates
CO i s s t r o n g l y chemisorbed by t r a n s i t i o n m e t a l s w i t h t h e C end a t t a c h e d t o t h e
CO i s a l s o chemisorbed by t h e noble m e t a l s w i t h t h e a x i s of
metal /11,12/.
t h e molecule normal t o t h e s u b s t r a t e . The c o v a l e n t bonding is, however, a p p r e c i a b l y
CO i s o n l y weakly adsorbed by A 1 /14/.
weaker t h a n on t h e t r a n s i t i o n m e t a l s /13/.
The molecule l i e s f l a t on t h e A 1 s u r f a c e and i s presumed t o be physisorbed.
CO adsorbed on N i i s probably b e t t e r understood t h a n any o t h e r a d s o r b a t e on
a metal s u b s t r a t e . The h i g h e s t occupied l o n e p a i r o r b i t a l ( 5 0 ) and t h e lowest
unoccupied o r b i t a l (21r ) a r e a p p r e c i a b l y admixed with t h e d / s o r b i t a l s of N i .
The admixture o f adsorbed molecule and metal s u b s t r a t e o r b i t a l s l e a d s t o bonding
and antibonding s t a t e s whose wavefunctions a r e l a r g e l y l o c a l i z e d i n t h e v i c i n i t y
o f t h e molecule. The one-electron energy l e v e l s f o r f r e e CO, and f o r CO adsorbed
on N i / I ? / ,
a r e shown s c h e m a t i c a l l y i n F i g . Ib. The occupied 50 -M d / s bonding
s t a t e ( 5 0 ) i s predominantly CO i n c h a r a c t e r , and t h e corresponding unoccupied
antibonding s t a t e (Md/s) i s predominantly metal i n c h a r a c t e r . On t h e o t h e r
hand, t h e occupied 2m -Md/s bonding s t a t e ( ~ d / s )i s predominantly metal i n charact e r , and t h e corresponding unoccupied antibonding s t a t e ( 2 % ) i s predominantly
CO i n c h a r a c t e r . W
e n o t e a l s o t h a t t h e o r b i t a l o f t h e CO a f f i n i t y l e v e l , which
i n t h e f r e e molecule l i e s - 2 eV above EV, i s a l s o admixed with t h e metal d/s
o r b i t a l s . On t h e b a s i s o f r e c e n t i n v e r s e photoemission d a t a /15/, t h e a f f i n i t y
l e v e l o f t h e adsorbed CO molecule ( i . e . , t h e energy l e v e l of t h e A-S complex
JOURNAL DE PHYSIQUE
C10-432
w i t h a n a d d i t i o n a l e l e c t r o n ) l i e s " 4 eV above EF.
The valence e l e c t r o n e x c i t a t i o n s o f t h e adsorbed CO molecule i n c l u d e i n t e r m o l e c u l a r
(bonding-antibonding) t r a n s i t i o n s o f t h e A-S complex, c h a r g e - t r a n s f e r t r a n s i t i o n s
between t h e e l e c t r o n l e v e l s o f t h e metal s u b s t r a t e and t h e A-S complex, a s w e l l
as i n t r a m o l e c u l a r t r a n s i t i o n s between l e v e l s o f t h e A-S complex which a r e predominantly CO i n c h a r a c t ~ r . I n t h i s connection we n o t e t h a t a n e l e c t r o n i c t r a n s i t i o n from t h e occupied 5 0 bonding s t a t e t o t h e unoccupied Md/s a n t i b o n d i n g state
i n v o l v e s a t r a n s f e r o f charge from t h e CO t o t h e metal and, t h u s , corresponds
a l s o t o a "charge-transfer" e x c i t a t i o n i n which t h e CO i s t h e donor and t h e
m e t a l i s t h e a c c e p t o r . The corre_sponding t r a n s i t i o n from t h e occupied Md/s
bonding s t a t e t o t h e unoccupied 2~ a n t i b o n d i n g s t a t e a l s o corresponds t o a
c h a r g e - t r a n s f e r e x c i t a t i o n from t h e metal a s t h e donor t o t h e CO a s t h e a c c e p t o r .
The c o v a l e n t bonding o f t h e homonuclear molecule N by N i is moderately
s t r o n g /15,19/.
The adsorbed N molecule is orienged w i t h i t s a x i s normal t o t h e
2
s u b s t r a t e , and t h e N - N i complex t h a t i s formed l a c k s a c e n t e r o f i n v e r s i o n . The
N-N s t r e t c h i n g v i b r a g i o n mode is a c c o r d i n g l y i n f r a r e d a c t i v e and, i n f a c t , h a s a
s i z e a b l e e f f e c t i v e charge. The e f f e c t i v e charge o f t h e N-Ni v i b r a t i o n mode i s comp a r a b l e i n magnitude t o t h a t o f t h e C-Ni v i b r a t i o n mode o f CO adsorbed on N i . The
valence e l e c t r o n e x c i t a t i o n s o f t h e adsorbed N2 molecule a r e s i m i l a r i n t y p e t o
t h o s e o f t h e adsorbed CO molecule.
Atomic Adsorbates
T h e o r e t i c a l i n v e s t i g a t i o n s o f atomic a d s o r b a t e s have been c a r r i e d o u t by Lang
and Williams /20/, by Lundqvist and coworkers /21/ and by Flynn and coworkers /22/.
Experimental i n v e s t i g a t i o n s have been c a r r i e d o u t by F l y n n ' s group (e.g., o p t i c a l
a b s o r p t i o n i n t h e u l t r a v i o l e t by halogen, a l k a l i and r a r e g a s atoms adsorbed
on v a r i o u s m e t a l s u b s t r a t e s i n c l u d i n g t h e a l k a l i m e t a l s and Mg) /19/, and by
Walden and Lindgren /22/and Anderson and J o s t e l l /21/(e.g.,
photoemission and
e l e c t r o n energy l o s s measurements f o r a l k a l i atoms adsorbed on noble m e t a l s
and t r a n s i t i o n m e t a l s ) .
The charge s t a t e o f t h e monovalent a d s o r b a t e s ( e . g . , hydrogen, halogen, and
a l k a l i atoms) on a g i v e n metal s u b s t r a t e i s determined by t h e r e l a t i v e magnitudes
o f t h e i o n i z a t i o n and a f f i n i t y e n e r g i e s o f t h e adsorbed atom E * and EA*, respeccorresponds
t i v e l y , and t h e work f u n c t i o n 0 of t h e metal s u b s t r a t e /21/.
t o t h e d i f f e r e n c e i n energy o f t h e adsorbed atom and t h a t o f t h e adsorbed i o n i z e d atom w i t h a n e l e c t r o n a t i n f i n i t y . I n t h e absence o f any s i z e a b l e c o v a l e n t
bonding o f t h e a d s o r b a t e by t h e s u b s t r a t e , which i s g e n e r a l l y t h e c a s e when
t h e s u b s t r a t e i s a f r e e - e l e c t r o n l i k e m e t a l , EI* w i l l be smaller t h a n EI, t h e
i o n i z a t i o n energy o f t h e f r e e atom, because of t h e a t t r a c t i v e coulomb i n t e r a c t i o n
o f t h e p o s i t i v e a d s o r b a t e i o n w i t h its image charge i n t h e metal. S i m i l a r l y
E * corresponds t o t h e d i f f e r e n c e i n energy o f t h e adsorbed atom w i t h a n e l e c t r o n
a! i n f i n i t y and t h a t of t h e adsorbed atom w i t h t h e e l e c t r o n a t t a c h e d (e.g.,
t h a t o f t h e n e g a t i v e a d s o r b a t e i o n ) . Here t o o , i n t h e absence o f any s i z e a b l e
c o v a l e n t bonding, EA* w i l l be l a r g e r t h a n EA, t h e a f f i n i t y energy of t h e f r e e
atom, because of t h e a t t r a c t i v e coulomb i n t e r a c t i o n between t h e n e g a t i v e a d s o r b a t e
i o n and i t s image charge i n t h e metal.
BI*
I n tQe c a s e o f atoms adsorbed on f r e e - e l e c t r o n - l i k e metal s u b s t r a t e s , t h e magnitude
of U = EI*
EA* i s a p p r e c i a b l y s m a l l e r t h a n U = EI
EA. ( I n t h e c a s e og
L i adsorbed on m e t a l s u b s t r a t e w i t h a high e l e c t r o n d e n s l t y , such a s A l , U
m a y , a c t u a l l y be n e g a t i v e , e.g. E * < EA*). When t h e work f u n c t i o n 0 i s l a r g e r
t h a n EA*, but s m a l l e r t h a n E *, t h e adsorbed atom w i l l be n e u t r a l . When 0 i s
smaller t h a n EA *, which is t$e c a s e f o r halogens adsorbed on A l , t h e a f f i n i t y
t h e a d s o r b a t e w i l l be a n e g a t i v e
l e v e l w i l l l i e below EF and be occupied, e.g.
i o n . When 0 i s l a r g e r t h a n EI*, which i s t h e c a s e f o r a l k a l i atoms adsorbed
on A l , t h e atoms w i l l be i o n i z e d , e.g., p o s i t i v e l y charged.
-
-
When t h e c o v a l e n t bonding of t h e a d s o r b a t e by t h e metal s u b s t r a t e i s s t r o n g ,
which i s o f t e n t h e c a s e f o r t r a n s i t i o n metal s u b s t r a t e s , t h e i n c r e a s e i n t h e
valence e l e c t r o n binding energy due t o covalent bonding o f f s e t s t h e decrease
due t o t h e screening of t h e coulomb i n t e r a c t i o n by t h e metal s u b s t r a t e . Moreover,
t h e a f f i n i t y energy EA* of t h e A-S complex does n o t have a simple r e l a t i o n t o
t h a t of t h e f r e e adsorbate and is g e n e r a l l y much s m a l l e r than EI* and smaller
than t h e 0 o f t h e s u b s t r a t e . The adsorbed atoms on a t r a n s i t i o n metal s u b s t r a t e
w i l l accordingly be l a r g e l y n e u t r a l .
Among t h e atomic adsorbates, H h a s been t h e most e x t e n s i v e l y s t u d i e d t h e o r e t i c a l The f r e e H- i o n which has a He c o n f i g u r a t i o n
l y and experimentally /21,25,26/.
is s t a b l e with EA = +0.75 eV. When H i s adsorbed on a metal s u b s t r a t e , i t s
a _ f f i n i t y l e v e l is lowered appreciably due t o t h e coulomb i n t e r a c t i o n of t h e
H i o n with i t s image charge i n t h e metal. Because of t h e small s i z e of t h e
H- i o n , and t h e small 0 of t h e a l k a l i metals, t h e a f f i n i t y l e v e l of H adsorbed
on a n a l k a l i metal s u b s t r a t e l i e s below EF. Thus, H adsorbs on t h e a l k a l i metals
a s an H- i o n and t h e bonding i s predominantly i o n i c . (H a l s o adsorbs on Ag
a s t h e H- i o n ) . On t h e o t h e r hand H i s chemisorbed by t r a n s i t i o n metals (e.g.,
N i , Pd and P t ) a t low temperature v i a s t r o n g covalent bonding of t h e 1 s e l e c t r o n
with t h e d e l e c t r o n s of t h e t r a n s i t i o n metal s u b s t r a t e . (On warming t o 300 K
t h e adsorbed H atoms undergo an i r r e v e r s i b l e t r a n s i t i o n t o a sub-surface s t a t e ) .
Photoemission d a t a i n d i c a t e t h a t a bonding H l e v e l i s s p l i t o f f from t h e s u b s t r a t e
d bands. I n t h e c a s e of H adsorbed on N i a t low coverage, t h e s p l i t - o f f l e v e l
l i e s - 8 eV below EF.
A l k a l i and halogen i o n s (e.g. ~ i and
+ Cl') have r a r e gas c o n f i g u r a t i o n s and
a r e bonded t o t h e metal s u b s t r a t e predominantly by t h e coulomb i n t e r a c t i o n of
t h e i o n with i t s image charge i n t h e metal. The s e l e c t r o n s of t h e n e u t r a l
a l k a l i atoms and t h e p e l e c t r o n s of n e u t r a l halogen atoms form covalent bonds
with t h e s , p , d e l e c t r o n s of t h e metal s u b s t r a t e . The covalent bonds a r e , i n
g e n e r a l , r e l a t i v e l y weak when t h e a l k a l i and halogen atoms a r e adsorbed on a
f r e e - e l e c t r o n - l i k e metal s u b s t r a t e . I n t h e c a s e o f t r a n s i t i o n metal s u b s t r a t e s ,
however, t h e covalent bonding between t h e s and p e l e c t r o n s of t h e a l k a l i and
halogen atoms with t h e metal d e l e c t r o n s can be r e l a t i v e l y strong.
Rare g a s atoms a r e physisorbed by metals v i a t h e van e r Waals i n t e r a c t i o n .
A s pointed out by Flynn e t a 1 /22/, when one of t h e p valence e l e c t r o n s of
adsorbed r a r e g a s atoms is e x c i t e d i n t o t h e next s l e v e l , t h e e x c i t e d r a r g a s
atom has an a l k a l i atom c o n f i g u r a t i n. ( I n t h e c a s e of Xe which has a 5p conf i g u r a t i o n , t h e e x c i t e d Xe has a 5p 6s' C s c o n f i g u r a t i o n ) . A s a consequence,
t h e i n t e r a c t i o n of t h e e x c i t e d r a r e g a s atom with t h e metal s u b s t r a t e w i l l be
s i m i l a r t o t h a t of t h e corresponding a l k a l i atom (e.g. t h e s e l e c t r o n forms a
covalent bond with t h e e l e c t r o n s of t h e s u b s t r a t e ) .
g
8
Experimental d a t a on t h e charge-states of a d s o r b a t e s is obtained from t h e dependence of t h e work f u n c t i o n of t h e metal s u b s t r a t e on adsorbate coverage, o p t i c a l
a b s o r p t i o n and e l e c t r o n energy l o s s measurements o f t h e e l e c t r o n i c e x c i t a t i o n s ,
i n f r a r e d d a t a on t h e v i b r a t i o n frequency of t h e A-S bond, and d a t a on Ex* derived
from photoemission measurements. The g e n e r a l t r e n d s i n t h e observed charges t a t e s of halogen and a l k a l i a d s o r b a t e s on d i f f e r e n t metal s u b s t r a t e s a r e a s
follows:
Halogen atoms which have a f f i n i t y e n e r g i e s g r e a t e r than, o r c l o s e t o , t h e work
C 1 and Br f o r which
f u n c t i o n of a f r e e - e l e c t r o n - l i k e metal s u b s t r a t e (e.g.
EA = 3.8 and 3.4 eV, r e s p e c t i v e l y , adsorbed on C s , Mg and A 1 f o r which 0 = 1.8,
3.8 and 4.2 eV, r e s p e c t i v e l y ) a r e adsorbed a s negative i o n s , i . e . , t h e a f f i n i t y
energy of t h e adsorbed halogens EA* f s g r e a t e r than t h e 0 o f t h e s u b s t r a t e .
I n g e n e r a l t h e image charge coulomb i n t e r a c t i o n , and, t h e r e f o r e , t h e magnitude
of E
EA, f o r a given halogen, i n c r e a s e s with i n c r e a s e i n t h e e l e c t r o n d e n s i t y
o f t k e metal. The bonding i s a l s o i o n i c i n t h e c a s e of halogen atoms adsorbed
a t low coverage on Ag and Cu. On t h e o t h e r hand, halogen atoms adsorbed on
t r a n s i t i o n metal s u b s t r a t e s a r e adsorbed a s "neutral" atoms, i n p a r t , because
o f t h e s i z e a b l e covalent bonding which tends t o decrease EA* and, i n p a r t , because
*
-
JOURNAL DE PHYSIQUE
of t h e l a r g e values o f 0 of t h e metal s u b s t r a t e s .
A l k a l i atoms whose EI values range from 3.9 eV (e.g., Cs) t o 5.4 eV (e.g. L i )
a r e adsorbed a s n e u t r a l atoms on a l k a l i metal s u b s t r a t e s (e.g., low e l e c t r o n
d e n s i t y metals with small 0 ) . On t h e o t h e r hand, they a r e adsorbed a s p o s i t i v e
i o n s on Mg and A 1 which have g r e a t e r 0 values and g r e a t e r e l e c t r o n d e n s i t i e s .
C s atoms which have t h e s m a l l e s t E a r e adsorbed a s i o n s on a Cu s u b s t r a t e .
I
On t h e o t h e r hand, t h e a l k a l i atoms a r e adsorbed a s t t n e u t r a l l t atoms on t r a n s i t i o n
metal s u b s t r a t e s , i n l a r g e p a r t , bepause t h e c o n t r i b u t i o n of covalent bonding
t o t h e binding energy o f f s e t s t h e decrease i n t h e i o n i z a t i o n energy due t o t h e
coulomb i n t e r a c t i o n of t h e i o n i z e d atoms with its image charge.
The atomic adsorbates e x h i b i t t h r e e types o f e l e c t r o n i c e x c i t a t i o n s : i ) Atomict y p e e x c i t a t i o n s of t h e adsorbed atoms which a r e t h e c o u n t e r p a r t s of t h e i n t r a molecular e x c i t a t i o n s of adsorbed molecules. i i ) A-S c h a r g e - t r a n s f e r e x c i t a t i o n s .
i i i ) E l e c t r o n t r a n s i t i o n s between bonding and antibonding l e v e l s of t h e adsorbed
atom-metal s u b s t r a t e complexes.
Atomic-type e l e c t r o n i c t r a n s i t i o n s a r e observed f o r r a r g a s a s o r b a t e s , e.g.
f o r atoms t h a t a r e weakly adsorbed. The u l t r a v i o l e t (p8+ p5srf s p e c t r a of r a r e
gas atoms adsorbed on a v a r i e t y of metal s u b s t r a t e s (e.g. a l k a l i metals, Mg,
A l , A u and T i ) have been i n v e s t i g a t e d i n some d e t a i l by Flynn and coworkers /20/.
They observed two types of s p e c t r a a r e observed. I n one type, which i n c l u d e s
n e a r l y a l l of t h e r a r e gases adsorbed on C s , K , Mg and A l , t h e s p e c t r a e x h i b i t
s t r o n g atom-like e x c i t a t i o n s . I n t h e second type, which i n c l u d e s Xe adsorbed
on A l , Au and T i , and K r adsorbed on A l , t h e atom-like e x c i t a t i o n s do n o t appear.
They suggested t h a t t h e absence o f t h e atomic-type e x c i a i o n s i n t h e second
type of s p e c t r a was due t o t h e f a c t t h a t t h e e x c i t e d ( p s ) s t a t e s f o r t h e adsorbed
Xe and K r l i e above E of t h e metal s u b s t r a t e and, were t h e r e f o r e , tlunstabletr
F
t o charge-transfer o f t h e e l e c t r o n s from t h e e x c i t e d l e v e l t o t h e s u b s t r a t e .
Lang, e t a 1 /27/, on t h e o t h e r hand f i n d , on t h e b a s i s of d e n s i t y f u n c t i o n a l
c a l c u l a t i o n s of t h e e l e c t r o n i c s t r u c t u r e of r a r e g a s adsorbates, t h a t t h e e x c i t e d
s t a t e s of t h e r a r e g a s a d s o r b a t e s , f o r both types of s p e c t r a , l i e above EF of
t h e metal s u b s t r a t e , and t h a t t h e i n s t a b i l i t y of t h e e x c i t e d s t a t e s toward charget r a n s f e r t o t h e s u b s t r a t e was not a v a l i d explanation f o r t h e d i f f e r e n c e s i n
t h e two types of s p e c t r a . We have a l r e a d y noted e a r l i e r t h a t t h e i n t r a m o l e c u l a r
e x c i t a t i o n s of p y r i d i n e adsorbed on Ag a r e n o t appreciably broadened even though
t h e e x c i t e d s t a t e s of t h e adsorbed p y r i d i n e a r e t t v i r t u a l bound s t a t e s t t . Demuth
e t a1 /28/have r e c e n t l y obtained e l e c t r o n energy l o s s d a t a on t h e e l e c t r o n i c
e x c i t a t i o n s of A r and Xe on A 1 and on t h e noble metals, which, i n f a c t , show
t h a t t h e e x c i t a t i o n s do have an atomic-type c h a r a c t e r . Their d a t a i n d i c a t e ,
moreover, t h a t t h e e x c i t e d s t a t e l i f e t i m e s were 4 times l o n g e r than t h a t pred i c t e d by Lang e t a 1 /27/ on t h e b a s i s of t h e i r d e n s i t y f u n c t i o n a l c a l c u l a t i o n s .
Rydberg s t a t e
More r e c e n t l y , Eberhardt and Zangwill /29/ have measured t h e 4d
e x c i t a t i o n s of Xe adsorbed on Au, and f i n d t h a t they e x h i b i t a broad, but well
defined s t r u c t u r e whose i n t e g r a t e d o s c i l l a t o r s t r e n g t h i s roughly t h e same a s
t h a t f o r f r e e Xe atoms, i . e . t h e o p t i c a l e x c i t a t i o n s a r e atomic-like i n character.
An explanation f o r t h e apparent discrepancy, between t h e d a t a obtained by Flynn's
group and those obtained by t h e o t h e r groups, i s s t i l l lacking. It may well
r e s i d e i n d i f f e r e n c e s i n t h e p r e p a r a t i o n and c h a r a c t e r of t h e adsorbed r a r e
gas samples.
f f
Charge-transfer e x c i t a t i o n s a r e of p a r t i c u l a r i n t e r e s t i n t h e case of hydrogen,
halogen and a l k a l i atoms which a r e adsorbed a s i o n s (e.g., H-, C1-, ~ a + /30/.
)
I n t h e c a s e of adsorbed C1- i o n s t h e charge-transfer e x c i t a t i o n s involve t h e
t r a n s i t i o n of a n e l e c t r o n from t h e adsorbate a f f i n i t y l e v e l (which l i e s below
EF) t o a n empty l e v e l i n t h e metal s u b s t r a t e (Fig. 2a). The charge-transfer
EA*.and extend t o a n energy
e x c i t a t i o n s have a n o n s e t a t a n energy hw = EF
beyond .tfw = EV EA* where they c o a l e s c e with photoemrssion e x c i t a t i o n s i n t o
t h e vacuum.
-
-
I n t h e c a s e of adsorbed ~ a i+o n s whose energy l e v e l l i e s above EF,
t h e charge-
t r a n s f e r e x c i t a t i o n s i n v o l v e t h e t r a n s i t i o n of an e l e c t r o n from a n occupied
l e v e l i n t h e metal s u b s t r a t e t o t h e " v i r t u a l bound s t a t e " o f t h e adsorbed ~ a +
(Fig. 2b). The c h a r g e - t r a n s f e r e x c i t a t i o n s have a n o n s e t a t a n e n e r g y f w
= E * - E and extend t o a n energy i l w = EIt - EC.
I
F
Fig. 2. Charge-transfer t r a n s i t i o n s of atomic a d s o r b a t e s
on a f r e e - e l e c t r o n - l i k e metal ( a ) ~ 1 (-b ) ~ a +
( c ) xeO.
Charge-transfer e x c i t a t i o n s a l s o occur f o r adsorbed r a r e g a s atomic 6e.g. xeO)
and f o r t h e a l k a l i atoms t h a t a r e adsorbed a s n e u t r a l atoms (e.g. L i adsorbed
on a C s s u b s t r a t e ) and The a f f i n i t y l e v e l o f t h e s e a d s o r b a t e s l i e below EV and
above EF, and, t h e r e f o r e , correspond t o v i r t u a l bound s t a t e s . For t h e s e a d s o r b a t e s ,
t h e c h a r g e - t r a n s f e r e x c i t a t i o n s i n v o l v e t h e t r a n s i t i o n o f a n e l e c t r o n from t h e
m e t a l i n t o t h e empty a f f i n i t y l e v e l , w i t h a n o n s e t a t %m = E
EF (Fig.
A
2c).
*-
F i n a l l y we n o t e t h a t n e u t r a l atoms t h a t a r e c o v a l e n t l y bonded by t h e metal subs t r a t e , e.g. H chemisorbed on a t r a n s i t i o n metal s u b s t r a t e , e x h i b i t intermolecu l a r e l e c t r o n i c e x c i t a t i o n s between bonding and a n t i b o n d i n g s t a t e s which a r e
s i m i l a r i n n a t u r e t o t h e i n t e r m o l e c u l a r e x c i t a t i o n s t h a t occur f o r molecular
adsorbates.
Some comments a r e i n o r d e r r e g a r d i n g t h e widths o f t h e e l e c t r o n i c e x c i t a t i o n s
o f A-S complexes. The energy l e v e l s o f A-S complexes have s i z e a b l e widths due
t o t h e admixing o f t h e a d s o r b a t e o r b i t a l s w i t h t h e o r b i t a l s of t h e quasi-continuous
energy l e v e l s of t h e s u b s t r a t e /18/.
These widths depend on t h e o v e r l a p o f
t h e a d s o r b a t e and s u b s t r a t e o r b i t a l s and, t h e r e f o r e , i n c r e a s e w i t h i n c r e a s e
i n t h e bonding s t r e n g t h . E f f e c t s t h a t d e c r e a s e t h e l i f e t i m e of t h e e x c i t e d
s t a t e a l s o c o n t r i b u t e t o t h e widths of t h e e l e c t r o n i c e x c i t a t i o n s . The coupling
o f t h e e l e c t r o n i c e x c i t a t i o n s o f t h e A-S complex w i t h t h e s i n g l e - p a r t i c l e and
c o l l e c t i v e e l e c t r o n e x c i t a t i o n s of t h e metal s u b s t r a t e l e a d s t o a broadening,
a s w e l l a s s h i f t i n g , of t h e e l e c t r o n i c e x c i t a t i o n s . The v i b r o n i c s t r u c t u r e
o f t h e e l e c t r o n i c e x c i t a t i o n s can l e a d t o a n a p p r e c i a b l e broadening o f t h e photoe x c i t a t i o n (e.g. a b s o r p t i o n ) s p e c t r a when t h e widths of t h e e l e c t r o n i c l e v e l s
a r e g r e a t e r t h a n t h e e n e r g i e s ( h a ) o f t h e v i b r a t i o n modes. We n o t e a l s o t h a t
t h e valence e l e c t r o n e x c i t a t i o n s o f t h e A-S complex may be accompanied by s i z e a b l e
shake-up, and r e l a t e d e f f e c t s , i n v o l v i n g e l e c t r o n - h o l e p a i r e x c i t a t i o n s i n t h e
metal s u b s t r a t e which l e a d t o a n a p p a r e n t broadening of t h e e l e c t r o n i c e x c i t a t i o n s .
VIBRONIC EXCITATIONS
W
e have t h u s f a r d i s c u s s e d t h e e l e c t r o n i c l e v e l s and e x c i t a t i o n s of A-S complexes.
We now c o n s i d e r t h e v i b r o n i c n a t u r e o f t h e l e v e l s and, i n p a r t i c u l a r , t h e intermolecu l a r v i b r o n i c e x c i t a t i o n s which play i m p o r t a n t r o l e s i n t h e Raman s c a t t e r i n g
and luminescence by t h e A-S complexes. For s i m p l i c i t y , we d i s c u s s t h e v i b r o n i c
c h a r g e - t r a n s f e r e x c i t a t i o n s of a n atomic a d s o r b a t e (e.g., C1-) on a f r e e - e l e c t r o n l i k e metal s u b s t r a t e (e.g., Al) /31/.
JOURNAL DE PHYSIQUE
Fig. 3. Dependence of t h e energy l e v e l s of C1- and
on d i s t a n c e from an A 1 s u b s t r a t e .
c1°
The v i b r o n i c c h a r a c t e r of t h e charge t r a n s f e r e x c i t a t i o n of an atomic adsorbate
a r i s e s from t h e dependence o f t h e ground and e x c i t e d energy l e v e l s on t h e adsorb a t e s e p a r a t i o n from t h e s u b s t r a t e . I n Fig. 3 we show t h e dependence of t h e
energy l e v e l s of ~ 1 - a n d c1° on t h e i r d i s t a n c e from t h e metal s u b s t r a t e . E
r e p r e s e n t s t h e energy t o remove a n e l e c t r o n from a f r e e C1- t o i n f i n i t y and
thereby form clO. The charge-transfer e x c i t a t i o n involves t h e t r a n s f e r o f a n
e l e c t r o n from C1- t o an empty l e v e l i n t h e metal, l e a v i n g c1° adsorbed a t t h e
s u r f a c e . The energy o f t h e adsorbed ~ 1 - l e v e lhas an a t t r a c t i v e c o n t r i b u t i o n
from t h e image charge p o t e n t i a l and, a t s h o r t d i s t a n c e s from t h e s u b s t r a t e ,
a r e p u l s i v e c o n t r i b u t i o n from t h e o v e r l a p of t h e a d s o r b a t e and s u b s t r a t e e l e c t r o n s ,
e.ej., t h e P a u l i exclusion p r i n c i p l e . On t h e o t h e r hand, t h e energy of t h e adsorbed
C 1 l e v e l has an a t t r a c t i v e c o n t r i b u t i o n from t h e van d e r Waals i n t e r a c t i o n s
and from weak covalent bonding of t h e c1° p e l e c t r o n s with t h e metal s , p e l e c t r o n s ,
and a r e p u l s i v e c o n t r i b u t i o n , a t s h o r t d i s t a n c e s , due t o t h e overlap o f a d s o r b a t e
and s u b s t r a t e e l e c t r o n s . Since t h e i o n i c i n t e r a c t i o n of t h e C1- with t h e subs t r a t e i s s t r o n g e r than t h e van d e r Waals and covalent i n t e r a c t i o n s of t h e c1°
with t h e s u b s t r a t e , t h e equilibrium d i s t a n c e of ~ 1 -and
,
t h e corresponding s p r i n g
c o n s t a n t K ( c ~ - )which determines t h e s t r e t c h v i b r a t i o n frequency of t h e C1-s u b s t r a t e bond, i s g r e a t e r than t h e corresponding q u a n t i t i e s f o r clO. The v e r t i c a l
E o ( d ) = ~ ~ * ( rde p) r e s e n t s t h e energy t o photoionize
energy s e p a r a t i o n E - ( d )
C1- a t constant d. '$he v a r i a f l o n of E o ( d ) - 0 with d i s t a n c e from t h e subC1
0
E - ( d ) = EA*fd)
s t r a t e i s a l s o shown i n Fig. 3 . The magnitude of EClo(d)
0 r e p r e s e n t s t h e energy t o t r a n s f e r an e l e c t r o n from t h e C1- l e d 1 t o a l e v e l
i n t h e metal a t EF, i . e . , t h e tfonsettfenergy ECT(d).
-
-
- -
The e l e c t r o n i c t r a n s i t i o n s between t h e ground s t a t e , (e.g., EC1-(d)) and t h e
e x c i t e d s t a t e (e.g., EClo(d)) correspond t o v i b r o n i c t r a n s i t i o n s , e.g., they
involve changes i n t h e v i b r a t i o n a l quantum number of t h e adsorbed C1- and clO.
The o p t i c a l matrix elements f o r such t r a n s i t i o n s depend on t h e overlap of t h e
v i b r a t i o n a l wavefunctions of t h e ground and e x c i t e d s t a t e s , which i n t u r n depend
on t h e d i f f e r e n c e i n equilibrium d i s t a n c e s of t h e adsorbed C1- and clO. Since
charge-transfer e l e c t r o n i c e x c i t a t i o n s have a continuum of e n e r g i e s beyond E
CT'
t h e v i b r o n i c e x c i t a t i o n s do not l e a d t o any observable v i b r a t i o n a l s t r u c t u r e .
The v i b r o n i c c h a r a c t e r of t h e charge-transfer e x c i t a t i o n s does play a key r o l e
i n t h e Raman s c a t t e r i n g by t h e v i b r a t i o n a l modes of t h e A-S complex. Also,
a s shown by Gadzuk e t a 1 /32/ i n t h e i r i n v e s t i g a t i o n of t h e photoemission e x c i t a t i o n s of Xe adsorbed on Cu(llO), t h e v i b r a t i o n a l l e v e l s of t h e A-S complexes
make a s i z e a b l e c o n t r i b u t i o n t o t h e broadening of t h e photoemission s p e c t r a .
RAMAN SCATTERING AND LUMINESCENCE
The p o i n t o f view t h a t t h e Raman s c a t t e r i n g and luminescence by adsorbed atoms
and molecules a r e o p t i c a l phenomena of adsorbate-substrate complexes l e a d s one
immediately t o t h e r e a l i z a t i o n t h a t t h e microscopic mechanisms, v i b r a t i o n mode
s e l e c t i o n r u l e s , e t c . f o r t h e s e phenomena can be markedly d i f f e r e n t from t h o s e
f o r t h e f r e e adsorbates. (This conclusion is, of course, a n obvious one i n
t h e case of t h e Raman s c a t t e r i n g by adsorbed atoms, which does not e x i s t f o r
t h e f r e e atoms). The emphasis of e f f o r t s t o e l u c i d a t e t h e Raman s c a t t e r i n g
and luminescence by adsorbates on metal s u b s t r a t e s , i s , i n p a r t , placed on t h e
e l u c i d a t i o n of t h e n a t u r e of t h e A-S complexes. Once t h e n a t u r e o f t h e A-S
complexes i s e s t a b l i s h e d , we can make use of t h e e x t e n s i v e knowledge about t h e
Raman s c a t t e r i n g /33/ and luminescence of molecules /34/, t h a t a l r e a d y e x i s t s ,
t o a s c e r t a i n t h e physics underlying t h e Raman s c a t t e r i n g and luminescence by
t h e A-S complexes. It i s a l s o evident t h a t t h e Raman s c a t t e r i n g and luminescence
o f t h e adsorbed atoms and molecules can, themselves, be used a s s u r f a c e s e n s i t i v e
spectroscopic probes of t h e e l e c t r o n i c e x c i t a t i o n s of A-S complexes. The measurement of Raman s c a t t e r i n g e x c i t a t i o n p r o f i l e s is, i n f a c t , a form of modulation
spectroscopy which i s p a r t i c u l a r l y advantageous f o r A-S complexes, s i n c e i t
enables one t o determine t h e e l e c t r o n i c e x c i t a t i o n s t h a t a r e a s s o c i a t e d with
t h e adsorbed atoms and molecules. The measurement of t h e e x c i t a t i o n p r o f i l e s
of t h e Raman s c a t t e r i n g by v i b r a t i o n modes of d i f f e r e n t symmetry provides informat i o n , not only about t h e e n e r g i e s and widths of t h e e l e c t r o n i c e x c i t a t i o n s t h a t
i n t e r a c t with t h e v i b r a t i o n modes, but a l s o , about t h e c h a r a c t e r of t h e e l e c t r o n i c
s t a t e s t h a t a r e involved.
I n i t s s i m p l e s t form, t h e microscopic mechanism f o r t h e Raman s c a t t e r i n g by
molecules, which i s a l s o a p p l i c a b l e t o c h a r g e - t r a n s f e r e x c i t a t i o n s o f S-A complexes /2/, involves a v i r t u a l o p t i c a l t r a n s i t i o n from a v i b r a t i o n a l l e v e l i n
t h e ground e l e c t r o n i c s t a t e t o a i n t e r m e d i a t e s t a t e , t h a t corresponds t o a vibrat i o n a l l e v e l i n t h e e x c i t e d e l e c t r o n i c s t a t e , followed by a v i r t u a l o p t i c a l
t r a n s i t i o n from t h e i n t e r m e d i a t e s t a t e t o a d i f f e r e n t v i b r a t i o n a l l e v e l i n t h e
ground e l e c t r o n i c s t a t e . A s can be seen i n t h e e l e c t r o n energy-atomic configurat i o n coordinate diagram shown i n Fig. 4, t h e equilibrium configuration-coordinates
and v i b r a t i o n a l frequencies of t h e ground and e x c i t e d e l e c t r o n i c s t a t e s a r e
different.
The t r a n s i t i o n p o l a r i z a b i l i t y (Raman s c a t t e r i n g matrix element) f o r t h e twol e v e l , two-step process can, under s i m p l i f y i n g assumptions, be expressed i n
t h e following form /32/:
where <e 1 p . A 1~O> and < O p - A, 1 e > a r e t h e momentum matrix elements f o r t h e t r a n s i
t i o n s between o> and
e i ; <v / v > , and
<vto!ve> a r e Franck-Condon type
lloverlapfl i n t e g r a l s over t h e wave?un8tions of t h e vibrational l e v e l s involved i n
t h e o p t i c a l t r a n s i t i o n , which depends on Qe - Qo and on t h e s t r e n g t h of t h e
e l e c t r o n - v i b r a t i o n mode i n t e r a c t i o n s involved; E and E a r e t h e e n e r g i e s of t h e
v i b r o n i c l e v e l s i n t h e ground and e x c i t e d states: r e s p e g t i v e l y , and o oe r e p r e s e n t s
t h e Lorentzian broadening of t h e e l e c t r o n i c e x c i t a t i o n . The resonance enhancement
of t h e Raman s c a t t e r i n g i n t e n s i t y , t h a t occurs a t a photon energy -TIW = Ee
Eo
depends on t h e width of t h e e l e c t r o n i c e x c i t a t i o n .
1
-
-
Luminescence d i f f e r s from Raman s c a t t e r i n g i n t h a t i t involves a real o p t i c a l
t r a n s i t i o n from a v i b r a t i o n l e v e l i n t h e ground e l e c t r o n i c s t a t e t o a v i b r a t i o n
l e v e l i n t h e e x c i t e d e l e c t r o n i c s t a t e , followed by a real t r a n s i t i o n ( a f t e r
dephasing) from a v i b r a t i o n a l l e v e l i n t h e e x c i t e d e l e c t r o n i c s t a t e t o a v i b r a t i o n a l
l e v e l i n t h e ground e l e c t r o n i c s t a t e (Fig. 4 ) . The luminescence by adsorbed
atoms and molecules w i l l i n g e n e r a l be q u i t e weak because of i n t e r a c t i o n s of
t h e e l e c t r o n i c e x c i t a t i o n s of t h e A-S complexes with t h e s i n g l e p a r t i c l e and
c o l l e c t i v e e l e c t r o n e x c i t a t i o n s of t h e metal s u b s t r a t e , which decrease t h e l i f e -
JOURNAL DE PHYSIQUE
C10-438
time of t h e e x c i t e d s t a t e /35/.
When t h e luminescence of an A-S complex i s
observable, measurements of t h e luminescence emission spectrum and t h e luminescence e x c i t a t i o n p r o f i l e can provide v i t a l information about t h e v i b r o n i c
e x c i t a t i o n s of t h e A-S complex.
le)
lo)
Fig. 4. Energy-configuration c o o r d i n a t e diagrams showing
t h e v i b r o n i c t r a n s i t i o n s t h a t a r e involved i n ( a ) Raman
s c a t t e r i n g and ( b ) luminescence.
Acknowledgements
We wish t o acknowledge v a l u a b l e d i s c u s s i o n s with C. P. Flynn, J. W. Gadzuk,
N. D. Lang, B. I. Lundqvist, R . P. Messmer, E. W. Plummer, P. Soven and M. S u n j i c .
References
*
+
Research supported by ONR and by t h e NSF MRL a t t h e U n i v e r s i t y of Pennsylvania.
IBM P o s t d o c t o r a l Fellow. P r e s e n t a d d r e s s , Chalmers U n i v e r s i t y of Technology,
Goteborg 41296 Sweden.
OTTO, A., J . Elec. Spect. and Related Prob. 29 (1983) 329.
ADRIAN, F. J., J . Chem. Phys. 1
7 (1982) 5 3 0 2 7
UEBP, H., ICHIMURA, S., and YAMADA, H., S u r f a c e Science 2 (1982) 433.
YAMADA, H., App. Spect. Rev. 17(2) (1981) 227.
BURSTEIN, E., BURNS, G. and DACOL, F., S o l i d S t a t e Commun. 3 (1983) 595.
See review papers i n Photoemission and t h e E l e c t r o n i c P r o p e r t i e s of S u r f a c e s ,
Edited by FEUERBACHER, B., FITTON, B., and WILLIS, R.F., (Wiley, NY 1978).
Because of t h e "length of paper" l i m i t a t i o n s we w i l l n o t attempt t o c i t e
a l l r e l e v a n t r e f e r e n c e s . It i s our i n t e n t i o n t o focus p r i m a r i l y on work
which c o n t r i b u t e s t o t h e conceptual understanding of t h e s u b j e c t .
KELEMEN, S. R., and FISCHER, T,.E., S u r f . S c i . 2 (1981) 45.
DEMUTH, J.E., CHRISTMANN, K., and SANDA, P.N., Chem. Phys. L e t t . 3 (1980)
201.
DEMUTH, J.E., and SANDA, P.N., Phys. Rev. L e t t . 3 (1981) 57.
AVOURIS, P.H., and DEMUTH, J.E., J. Chem. Phys. 75 (1981) 4783.
KELEMEN, S.R. and KALDOR, A., Chem. Phys. L e t t . 2 (1980) 205.
CHEN, C.Y., LUNDQVIST, S., and TOSATTI, E., S o l i d
BURSTEIN, E., CHEN, Y.J.,
S t a t e Commun. 2 (1979) 567.
FREUND, H.J., and PLUMMER, E.W., Phys. Rev. B23 (1981) 4859.
STOHR, J. and JAEGER, R., Phys. Rev. B26 (1982) 4111.
SPITZER, A., and LUTH, H., S u r f . S c i . 2 (1981) 29.
CHIANG, T.-C., KAINDL, G., and EASTMAN, D.E., S o l i d S t a t e Commun. 3 (1980) 25.
HIMPSEL, F.J., and FAUSTER, T.H., Phys. Rev. L e t t . 9 (1982) 1583.
DINARDO, J . , EBERHARDT, W., FREUND, H.-J., and PLUMMER, E.W. S u r f . S c i .
118 (1982) 465.
-
LANG, N.D., and WILLIAMS, A.R.,
Phys. Rev. B18 (1978) 616. LANG, N.D.,
Phys. Rey. 3 (1971) 4234.
Surf.Sci.
LUNDQVIST, B.I., GUNNARSSON, O., HJELMBERG, H., and NORSKOV, J.K.,
89 (1979) 196. JOHANSSON, P. K . , and LUNDQVIST, B.I., i n Recent Developments i n Condensed Matter Physics, Vol. 1, Edited by DEVREESE, J.T., (Plenum
P r e s s , NY, 1981) p. 605.
CUNNINGHAM, J.E., GREENLAW, D., FLYNN, C.P., and ERSKINE, J.L., Phys.
Rev. El (1980) 717. CUNNINGHAM, J.E., GIBBS, D., C H I U , T.H. and FLYNN,
(1981) L113. GIBBS, D., CUNNINGHAM, J.E.,
C.P., J . Phys. C: S o l i d S t a t e
C H I U , T.H. and FLYNN, C.P., J. Phys. C: S o l i d S t a t e
(1981) 1119. FLYNN,
(1981) 447. FLYNN,
C.P., and CHEN, Y.C.,
Phys. Rev. L e t t .
C.P. and CUNNINGHAM, J.E., J. Phys. C: S o l i d S t a t e 15 (1982) 11169.
GIBBS, D., PhD T h e s i s , U n i v e r s i t y of I l l i n o i s , 1983.
LINDGREN, A.A.,
and WALDEN, L., S o l i d S t a t e Commun. 5 (1978) 13 and 2f!
(1980) 671; Phys. Rev. E (1981) 5967; S u r f . S c i . 89 (1979) 319.
ANDERSON, S . , and JOSTELL, U.G., S s l i d S t a t e Comrnun. l T ( 1 9 7 3 ) 829 and 833;
S u r f . S c i . 3 (1974) 629.
BLANCHET, G.B., ESTRUP, P.J. and STILES, P.J., Phys. Rev. L e t t . 44 (1980)
171; BLANCHET, G.B. and STILES, P.S., Phys. Rev. B21 (1980) 3273 and
3655.
EBERHARDT, W., GREUTER, F., and PLUMMER, E.W., Phys. Rev. L e t t . 3 (1981)
1085.
LANG, N.D., WILLIAMS, A.R.,
HIMPSEL, F.J., RIEHL, B. and EASTMAN, D.E.,
Phys. Rev. B26 (1982) 1728.
DEMUTH, J.E., AVOURIS, P.H., and SCHMEISSER, S., Phys. Rev. L e t t . 50 (1983)
600.
EBERHARDT, W . , and ZANGWILL, A . , Phys. Rev. B27 (1983).
APELL, P., BURSTEIN, E., and SUNJIC, M., Bull. Amer. Phys. Soc.
(1983)
526.
SUNJIC, M., APELL, P. and BURSTEIN, E., Bull. Amer. Phys. Soc. 3 (1983)
526.
GADZUK, J . W . ,
HOLLOWAY, S., M A R I A N I , C., and HORN, K., Phys. Rev. L e t t .
48 (1982) 1288.
A L B ~ H T ,A.C.,
and HUTLEY, M.C.,
J. Chew. Phys. 55 (1971) 4438.
BIRKS, J.B., Photophysics of Aromatic Molecules (Wiley-Interscience, NY,
1972.).
RITCHIE, G. and BURSTEIN, E., Phys. Rev.
(1981) 4843.
14
3
111
8