TAU similarity rules – correct usage of TAU in SI units TAU Training Bernhard Eisfeld Folie 1 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Overview • Introduction • Theoretical background • Computation with TAU • Procedures for dimensional solutions Folie 2 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Overview • Introduction • Theoretical background • Computation with TAU • Procedures for dimensional solutions Folie 3 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Introduction Difficulties in TAU application TAU solves Navier-Stokes equations in non-dimensional form • TAU allows for non-dimensional as well as dimensional output Î Various parameters available for setting up a computation • Arising questions • • • What is the meaning of the parameters? Which parameters must be set? How to achieve consistent parameter settings? Requirement Understand the underlying principles of non-dimensionalisation (similarity rules) Folie 4 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Overview • Introduction • Theoretical Background • Computation with TAU • Procedures for dimensional solutions Folie 5 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Assumptions about the fluid (transonic flow) • Newtonian fluid • Viscosity follows Sutherland law • Heat flux follows Fourier’s law • Prandtl number is constant • Perfect gas: ideal gas law + constant specific heats Assumptions define • Material laws • Thermodynamic relations TAU checks consistency of parameters with these assumptions! Folie 6 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Non-dimensionalisation of the governing equations • Introduce (arbitrary) dimensional reference quantities φref ˆ • Define non-dimensional quantities φ = φ φref → φ = φˆ φref • Introduce non-dimensional quantities into all equations Î Non-dimensional equations with non-dim. reference quantity groups Example: Continuity equation ⎛ Lref ⎜ ⎜t U ⎝ ref ref ⎞ ∂ρˆ ∂ ⎟ ˆUˆ k = 0 + ρ ⎟ ∂tˆ ∂xˆ k ⎠ ( ) • Require formal identity of dimensional and non-dimensional equations Î All non-dimensional groups are equal to 1 Example: Continuity equation ⎛ Lref ∂ρˆ ∂ ˆ + ρˆU k = 0 Î ⎜ ⎜t U ∂tˆ ∂xˆk ⎝ ref ref ( ) ⎞ ⎟ =1 ⎟ ⎠ Î Not all reference quantities are independent (only 4) Folie 7 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Reference quantities • (Arbitrary) choice in TAU: - Reference pressure pref Note: Ideal gas law holds - Reference temperature Tref - Reference density ρ ref - Reference length Lref pref = ρ ref Rref Tref (Rref is dependent variable) Note: Values of reference quantities are arbitrary • Sutherland law requires additional reference state (μ S , TS ) where μS T S+ S = CS = const. 3/ 2 TS Note: Sutherland reference state is independent (depends on fluid only) Folie 8 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Dimensional TAU reference state (1) Assumptions: • Reference quantities belong to the treated fluid • Reference quantities belong to a true physical state Î Reference gas constant = fluid gas constant Rref = R Î Reference state is defined by only two thermodynamic state variables - Reference pressure p * = pref - Reference density ρ * = ρ ref Note: Reference state is still fictive ! Folie 9 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Dimensional TAU reference state (2) Dimensional reference state can be expressed in terms of Fluid parameters Specific gas constant R Isentropic exponent γ Prandtl number of the fluid Pr = μ*Cp/λ* Pressure of reference state p* Density of reference state ρ* Mach number of reference state Ma* = U*/a* Reynolds number of reference state Re* = ρ*U*L*/μ* Characteristic length L* Sutherland law parameters Sutherland constant S Thermodyn. state param‘s Flow parameters Geometric parameter Constant CS Folie 10 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Dimensional TAU reference state (3) Sutherland law constraints choice of reference quantities (Reference state fulfills Sutherland law) μ* T +S * (T ) * 3/ 2 ρ = * p* p* γ * Ma L * + S ρ ρ R = CS 3/ 2 * Re* ⎛ p ⎞ ⎜⎜ * ⎟⎟ ⎝ρ R⎠ * * In TAU in general Re* is considered a dependent quantity ! Folie 11 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Non-dimensional TAU reference state Apply non-dimensionalisation to the reference state ρ R p T =1 =1 ρˆ * = =1 =1 Rˆ = pˆ * = Tˆ * = Rref pref ρ ref Tref Î Non-dimensional reference state can be expressed in terms of Fluid parameters Flow parameters Geometric parameter Isentropic exponent γ Prandtl number of the fluid Pr = μ*Cp/λ* Mach number of reference state Ma* = U*/a* Reynolds number of reference state Re* = ρ*U*L*/μ* Non-dim. char. length (Reynolds length) L*/Lref Sutherland law parameters Non-dim. Sutherland constant Ŝ = S/Tref similarity parameters (equal values Î identical non-dim. solution) Folie 12 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Association of the reference state with the flow field Reference state is still arbitrary! Î Assumption (default): Reference state = far field state • Pressure of reference state p * = p∞ • Density of reference state ρ * = ρ∞ • Mach number of reference state Ma * = Ma∞ = * • Reynolds number of reference state Re = Re ∞ = • Prandtl number of fluid μ∞C p Pr = λ∞ U∞ a∞ ρ ∞U ∞ L* μ∞ Caution: TAU references always refer to reference state. TAU far field state may differ from reference state (user input) ! Folie 13 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Theoretical background Non-dimensional coefficients Definition of force coefficients (with respect to far field state) Definiton of pressure coefficient (with respect to far field state) C Force = Cp = Force 1 ρ ∞U ∞2 A 2 p − p∞ 1 ρ ∞U ∞2 2 Deviating definitions in TAU Definition of force coefficients (with respect to reference state) Definiton of pressure coefficient (with respect to reference state) TAU C Force = C TAU p = Force ( ) 1 * *2 ρ U A 2 p − p* ( ) 1 * * ρ U 2 2 Differences if far field state ≠ reference state ! Folie 14 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Overview • Introduction • Theoretical background • Computation with TAU • Procedures for dimensional solutions Folie 15 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU TAU parameters Parameter TAU key word string Default value γ Gas constant gamma 1.4 Pr Prandtl number 0.72 Ma* Reference Mach number -- U* Reference velocity -- Re* Reynolds number -- L*/Lref Reynolds length -- T* Reference temperature 273.15 K p* Reference pressure 101325.0 Pa ρ* Reference density 1.29290880647192 kg/m2 R Gas constant R 287 m2 / (s2 K) S Sutherland constant 110.4 K TS Sutherland reference temperature 273 K μS Sutherland reference viscosity 1.716e-5 Pa s sgrid Grid scale -Folie 16 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a non-dimensional solution Parameter settings (1) • Fluid parameters: TAU assumes air (default) • Flow parameters: Specify γ = 1.4, Pr =0.72 Ma* , Re* • Parameters of the Sutherland law: TAU assumes air (default) (Values for other gases below) S =110.4 K TS = 273K μ S = 1.716 ⋅10 −5 Pa s ⇒ CS = 1.458 ⋅10 −6 Pa s / K 1/ 2 Specify reference state temperature T * =Tref S → Sˆ = Tref Folie 17 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a non-dimensional solution Parameter settings (2) • Geometric parameters: Specify non-dimensional characteristic length (Reynolds length) L* / Lref r r Note: Grid coordinates are non-dimensional, i.e. xˆ grid = x grid / Lref * Î Take L / Lref from grid Folie 18 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a non-dimensional solution Solution output settings • Information is not sufficient for dimensional output Î Write output dimensionless (0/1) : 1 Note: Default is 0 (dimensional output) ! • Non-dimensional coefficients are valid (if far field state = reference state!) • Dimensional reference quantities in stdout are meaningless ! Folie 19 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a dimensional solution Parameter settings (1) • Fluid parameters: TAU assumes air (default) m2 γ = 1.4, Pr =0.72, R = 287 2 s K • Thermodynamic parameters: In general specify only two of them (p , ρ ) * * or (p ,T ) * * or (T * , ρ* * • Flow parameters: Specify Ma ) or U * * Do not specify Re (is defined by Sutherland law) Folie 20 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a dimensional solution Parameter settings (2) • Parameters of the Sutherland law (according to White, “Viscous fluid flow”) Gas TS in K μs in Pa s S CS Temp.range in K in Pa s / K1/2 in K for 2% error Air (TAU) 273 1.716e-5 110.4 1.458e-6 170 – 1900 Air (White) 273 1.716e-5 111 1.460e-6 170 – 1900 CO2 273 1.370e-5 222 1.503e-6 190 – 1900 N2 273 1.663e-5 107 1.401e-6 100 – 1500 O2 273 1.919e-5 139 1.753e-6 190 – 2000 H2 273 8.411e-6 97 0.690e-6 220 - 1100 Default Folie 21 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a dimensional solution Parameter settings (3) • Geometric parameters: Specify non-dimensional characteristic length (Reynolds length) L* / Lref Specify the grid scale: TAU assumes Lref = 1m L / 1m s grid = 1m Definition of grid scale Lgrid / Lref where L1m / 1m Lgrid / Lref (“grid in meters”) Some char. length in real world in m Same char. length in grid units Example: Grid for full scale aircraft, span: Compute wind tunnel experiment, where bmod el / 1m 2.50 = = 0.05 Grid scale s grid = bgrid / Lref 50 bgrid / Lref = 50 bmod el = 2.50m Folie 22 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Computation with TAU Obtaining a dimensional solution Solution output settings • Information is always sufficient for non-dimensional output Î Write output dimensionless (0/1) : 1 • Correct dimensional output (forces in N) requires correct grid scale ! Î Write output dimensionless (0/1) : 0 (default setting) • Non-dimensional coefficients are independent of the grid scale Folie 23 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Overview • Introduction • Theoretical background • Computation with TAU • Procedures for dimensional solutions Folie 24 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Procedures for dimensional solutions Standard procedure for air 1. 2. 3. 4. 5. 6. 7. Rely on TAU fluid properties for air Specify 2 thermodynamic state quantities, i.e. (p*, ρ*) or (p*, T*) or (ρ*, T*) Specify either Ma* or U* Do not specify Re* Specify Reynolds length L*/Lref In case of dimensional solution specify grid scale correctly Check stdout for • Unspecified thermodynamic quantity • Unspecified Mach number or velocity • Reynolds number Possible adaptations: • Mach number/velocity: Adapt sound speed via thermodynamic state quantities • Reynolds number: • Specify directly + only one thermodynamic state quantity • Adapt parameters of Sutherland law Folie 25 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Procedures for dimensional solutions Procedure for ICAO standard atmosphere Specify all 3 thermodynamic state quantities, i.e. p*, ρ* and T* Î R ≈ 287.053 m2/(s2K) ≠ 287.000 m2/(s2K) (default) 2. Specify either Ma* or U* 3. Do not specify Re* 4. Specify Reynolds length L*/Lref 5. In case of dimensional solution specify grid scale correctly 6. Check stdout for • Unspecified Mach number or velocity • Reynolds number Possible adaptations: • Not possible. Î Inconsistency with ICAO standard atmosphere 1. Folie 26 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Procedures for dimensional solutions Procedure for high pressure/low temperature wind tunnel (ETW) Specify isentropic exponent of the gas (Default: γ = 1.4) Specify 3 thermodynamic state quantities: • p*, ρ*, T* Î R • Gas constant R + 2 thermodynamic state quantities 3. Specify either Ma* or U* 4. Do not specify Re* 5. Specify Reynolds length L*/Lref 6. In case of dimensional solution specify grid scale correctly 7. Provide Sutherland reference state for the respective gas (TS, μS) 8. Check stdout for • Unspecified thermodynamic quantity • Unspecified Mach number or velocity • Reynolds number Possible adaptations: • As in standard procedure for air 1. 2. Folie 27 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Procedures for dimensional solutions Procedure for unknown wind tunnel model size Specify fluid properties in experiment (R, γ, Pr). Default is air. Specify parameters of Sutherland law. Default is air. Specify 2 thermodynamic state quantities, i.e. (p*, ρ*) or (p*, T*) or (ρ*, T*) Specify either Ma* or U* Do not specify Re* Specify Reynolds length L*/Lref Set grid scale sgrid = 1 Start TAU without providing the grid Î program stops Î check stdout for Reynolds number ReTAU 9. Specify Reynolds number Re* according to experiment 10. Re-specify grid scale as sgrid = Re*/ReTAU Î Grid coordinates interpreted as in meters Grid scale determines model size Possible adaptations: • Adjust sgrid for removing inconsistencies due to round-off errors 1. 2. 3. 4. 5. 6. 7. 8. Folie 28 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008 Procedures for dimensional solutions Documentation Internal report (IB) in preparation: “Non-dimensionalisation of the governing equations and parameter specification for numerical simulations with the DLR TAU code” Folie 29 > TAU Training > Non-Dimensionalisation Eisfeld> 25.-29.02.2008
© Copyright 2025 Paperzz