Rules for integrands involving inverse sines and cosines 1. à u Ha + b ArcSin@c + d xDLn â x 1: à Ha + b ArcSin@c + d xDLn â x Derivation: Integration by substitution Rule: Program code: n à Ha + b ArcSin@c + d xDL â x 1 d SubstBà Ha + b ArcSin@xDLn â x, x, c + d xF Int@Ha_.+b_.*ArcSin@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@Ha+b*ArcSin@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,n<,xD Int@Ha_.+b_.*ArcCos@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@Ha+b*ArcCos@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,n<,xD 2: à He + f xLm Ha + b ArcSin@c + d xDLn â x Derivation: Integration by substitution Rule: Program code: m n à He + f xL Ha + b ArcSin@c + d xDL â x 1 d SubstBà de-cf fx + d Int@He_.+f_.*x_L^m_.*Ha_.+b_.*ArcSin@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@HHd*e-c*fLd+f*xdL^m*Ha+b*ArcSin@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,e,f,m,n<,xD Int@He_.+f_.*x_L^m_.*Ha_.+b_.*ArcCos@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@HHd*e-c*fLd+f*xdL^m*Ha+b*ArcCos@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,e,f,m,n<,xD d m Ha + b ArcSin@xDLn â x, x, c + d xF Rules for integrands involving inverse sines and cosines 2 3: à IA + B x + C x2 M Ha + b ArcSin@c + d xDLn â x when B I1 - c2 M + 2 A c d 0 ì 2 c C - B d 0 p Derivation: Integration by substitution Basis: If B I1 - c2 M + 2 A c d 0 ì 2 c C - B d 0, then A + B x + C x2 - dC2 + Rule: If B I1 - c2 M + 2 A c d 0 ì 2 c C - B d 0, then 2 n à IA + B x + C x M Ha + b ArcSin@c + d xDL â x p Program code: 1 d C d2 SubstBà - Hc + d xL2 C x2 C p + d2 d2 Ha + b ArcSin@xDLn â x, x, c + d xF Int@HA_.+B_.*x_+C_.*x_^2L^p_.*Ha_.+b_.*ArcSin@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@H-Cd^2+Cd^2*x^2L^p*Ha+b*ArcSin@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,A,B,C,n,p<,xD && ZeroQ@B*H1-c^2L+2*A*c*dD && ZeroQ@2*c*C-B*dD Int@HA_.+B_.*x_+C_.*x_^2L^p_.*Ha_.+b_.*ArcCos@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@H-Cd^2+Cd^2*x^2L^p*Ha+b*ArcCos@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,A,B,C,n,p<,xD && ZeroQ@B*H1-c^2L+2*A*c*dD && ZeroQ@2*c*C-B*dD 4: à He + f xLm IA + B x + C x2 M Ha + b ArcSin@c + d xDLn â x when B I1 - c2 M + 2 A c d 0 ì 2 c C - B d 0 p Derivation: Integration by substitution Basis: If B I1 - c2 M + 2 A c d 0 ì 2 c C - B d 0, then A + B x + C x2 - dC2 + Rule: If B I1 - c2 M + 2 A c d 0 ì 2 c C - B d 0, then m 2 n à He + f xL IA + B x + C x M Ha + b ArcSin@c + d xDL â x p Program code: 1 d SubstBà C d2 Hc + d xL2 de-cf fx + d m d C x2 C - + d2 d2 p Ha + b ArcSin@xDLn â x, x, c + d xF Int@He_.+f_.*x_L^m_.*HA_.+B_.*x_+C_.*x_^2L^p_.*Ha_.+b_.*ArcSin@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@HHd*e-c*fLd+f*xdL^m*H-Cd^2+Cd^2*x^2L^p*Ha+b*ArcSin@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,e,f,A,B,C,m,n,p<,xD && ZeroQ@B*H1-c^2L+2*A*c*dD && ZeroQ@2*c*C-B*dD Int@He_.+f_.*x_L^m_.*HA_.+B_.*x_+C_.*x_^2L^p_.*Ha_.+b_.*ArcCos@c_+d_.*x_DL^n_.,x_SymbolD := 1d*Subst@Int@HHd*e-c*fLd+f*xdL^m*H-Cd^2+Cd^2*x^2L^p*Ha+b*ArcCos@xDL^n,xD,x,c+d*xD ; FreeQ@8a,b,c,d,e,f,A,B,C,m,n,p<,xD && ZeroQ@B*H1-c^2L+2*A*c*dD && ZeroQ@2*c*C-B*dD Rules for integrands involving inverse sines and cosines 3 2. à Ia + b ArcSinAc + d x2 EM â x when c2 1 n 1. à Ia + b ArcSinAc + d x2 EM â x when c2 1 ì n > 0 n 1. à a + b ArcSinAc + d x2 E â x when c2 1 a + b ArcSinAc + d x2 E â x when c2 1 1: à Derivation: Integration by parts Rule: If c2 1, then a + b ArcSinAc + d x2 E â x x à a + b ArcSinAc + d x2 E - b d á x Π x ICosA 2 b E + c SinA 2 b EM FresnelCB a c b a c Πb 1 a + b ArcSinAc + d x2 E F Program code: - 2 c d x2 - d2 x4 a + b ArcSinAc + d x2 E - ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM 1 x2 Π x ICosA 2 b E - c SinA 2 b EM FresnelSB a + a + b ArcSinAc + d x2 E c b a 1 Rule: a + b ArcCosAc + d x2 E â x when c2 1 1: à a + b ArcCosA1 + d x2 E â x á a + b ArcSinAc + d x2 E F ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM Int@Sqrt@a_.+b_.*ArcSin@c_+d_.*x_^2DD,x_SymbolD := x*Sqrt@a+b*ArcSin@c+d*x^2DD Sqrt@PiD*x*HCos@aH2*bLD+c*Sin@aH2*bLDL*FresnelC@Sqrt@cHPi*bLD*Sqrt@a+b*ArcSin@c+d*x^2DDD HSqrt@cbD*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL + Sqrt@PiD*x*HCos@aH2*bLD-c*Sin@aH2*bLDL*FresnelS@Sqrt@cHPi*bLD*Sqrt@a+b*ArcSin@c+d*x^2DDD HSqrt@cbD*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D 2. à c Πb âx a + b ArcCosA1 + d x2 E â x + 1 Rules for integrands involving inverse sines and cosines 4 2 - a + b ArcCosA1 + d x2 E SinA 2 ArcCosA1 + d x2 EE 2 1 + dx 1 a - 2 Π SinB 2b 1 b dx 1 a 2 Π CosB 2b 1 b dx F SinB 1 F SinB 1 2 2 ArcCosA1 + d x2 EF FresnelCB ArcCosA1 + d x2 EF FresnelSB 1 Πb 1 Πb a + b ArcCosA1 + d x2 E F + a + b ArcCosA1 + d x2 E F Program code: Int@Sqrt@a_.+b_.*ArcCos@1+d_.*x_^2DD,x_SymbolD := -2*Sqrt@a+b*ArcCos@1+d*x^2DD*Sin@ArcCos@1+d*x^2D2D^2Hd*xL 2*Sqrt@PiD*Sin@aH2*bLD*Sin@ArcCos@1+d*x^2D2D*FresnelC@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@1+d*x^2DDDHSqrt@1bD*d*xL + 2*Sqrt@PiD*Cos@aH2*bLD*Sin@ArcCos@1+d*x^2D2D*FresnelS@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@1+d*x^2DDDHSqrt@1bD*d*xL ; FreeQ@8a,b,d<,xD Rules for integrands involving inverse sines and cosines Rule: 2: à 5 a + b ArcCosA- 1 + d x2 E â x á a + b ArcCosA- 1 + d x2 E â x a + b ArcCosA- 1 + d x2 E CosA 2 ArcCosA- 1 + d x2 EE 2 2 1 - dx 1 a 2 Π CosB 2b 1 b dx 1 F CosB a 2 Π SinB 2b 1 b dx ArcCosA- 1 + d x2 EF FresnelCB 1 2 F CosB 1 2 ArcCosA- 1 + d x2 EF FresnelSB 1 Πb 1 Πb a + b ArcCosA- 1 + d x2 E F a + b ArcCosA- 1 + d x2 E F Program code: Int@Sqrt@a_.+b_.*ArcCos@-1+d_.*x_^2DD,x_SymbolD := 2*Sqrt@a+b*ArcCos@-1+d*x^2DD*Cos@H12L*ArcCos@-1+d*x^2DD^2Hd*xL 2*Sqrt@PiD*Cos@aH2*bLD*Cos@ArcCos@-1+d*x^2D2D*FresnelC@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@-1+d*x^2DDDHSqrt@1bD*d*xL 2*Sqrt@PiD*Sin@aH2*bLD*Cos@ArcCos@-1+d*x^2D2D*FresnelS@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@-1+d*x^2DDDHSqrt@1bD*d*xL ; FreeQ@8a,b,d<,xD 2: à Ia + b ArcSinAc + d x2 EM â x when c2 1 ì n > 1 n Derivation: Integration by parts twice Basis: If c2 1, then ¶x Ia + b ArcSinAc + d x2 EM n Basis: x2 -d x2 H2 c+d x2 L - ¶x Rule: If c2 1 ì n > 1, then 2 b d n x Ha+b ArcSin@c+d x2 DLn-1 -2 c d x2 -d2 x4 -2 c d x2 -d2 x4 d2 x à Ia + b ArcSinAc + d x EM â x x Ia + b ArcSinAc + d x EM - 2 b d n á 2 n 2 n x2 Ia + b ArcSinAc + d x2 EM n-1 - 2 c d x2 - d2 x4 âx Ia + b ArcSinAc Rules for integrands involving inverse and cosines + d à sines x Ia + b ArcSinAc + d x2 EM + n x2 EM â x x Ia + b ArcSinAc + d x2 EM - 2 b d n á n 2bn n - 2 c d x2 - d2 x4 Ia + b ArcSinAc + d x2 EM n-1 dx Program code: Int@Ha_.+b_.*ArcSin@c_+d_.*x_^2DL^n_,x_SymbolD := x*Ha+b*ArcSin@c+d*x^2DL^n + 2*b*n*Sqrt@-2*c*d*x^2-d^2*x^4D*Ha+b*ArcSin@c+d*x^2DL^Hn-1LHd*xL 4*b^2*n*Hn-1L*Int@Ha+b*ArcSin@c+d*x^2DL^Hn-2L,xD ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D && RationalQ@nD && n>1 Int@Ha_.+b_.*ArcCos@c_+d_.*x_^2DL^n_,x_SymbolD := x*Ha+b*ArcCos@c+d*x^2DL^n 2*b*n*Sqrt@-2*c*d*x^2-d^2*x^4D*Ha+b*ArcCos@c+d*x^2DL^Hn-1LHd*xL 4*b^2*n*Hn-1L*Int@Ha+b*ArcCos@c+d*x^2DL^Hn-2L,xD ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D && RationalQ@nD && n>1 6 âx - 2 c d x2 - d2 x4 - 4 b2 n Hn - 1L à Ia + b ArcSinAc + d x2 EM n-2 âx Rules for integrands involving inverse sines and cosines 7 2. à Ia + b ArcSinAc + d x2 EM â x when c2 1 ì n < 0 n 1. à 1 a + b ArcSinAc + d x2 E 1: à â x when c2 1 1 a + b ArcSinAc + d x2 E â x when c2 1 Rule: If c2 1, then 1 a + b ArcSinAc + d x2 E x Ic CosA 2 b E - SinA 2 b EM CosIntegralA 2 b Ia + b ArcSinAc + d x2 EME a - á a c 2 b ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM 1 1 Program code: - âx x Ic CosA 2 b E + SinA 2 b EM SinIntegralA 2 b Ia + b ArcSinAc + d x2 EME a a c 2 b ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM 1 IntA1Ha_.+b_.*ArcSin@c_+d_.*x_^2DL,x_SymbolE := -x*Hc*Cos@aH2*bLD-Sin@aH2*bLDL*CosIntegral@HcH2*bLL*Ha+b*ArcSin@c+d*x^2DLD H2*b*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL x*Hc*Cos@aH2*bLD+Sin@aH2*bLDL*SinIntegral@HcH2*bLL*Ha+b*ArcSin@c+d*x^2DLD H2*b*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D 1 Rules for integrands involving inverse sines and cosines 2. à Rule: 1 a + b ArcCosAc + d x2 E 1: à 8 â x when c2 1 1 a + b ArcCosA1 + d x2 E âx á 1 a + b ArcCosA1 + d x2 E x CosA 2 b E CosIntegralA 2 b Ia + b ArcCosA1 + d x2 EME a 1 2 b + - d x2 âx x SinA 2 b E SinIntegralA 2 b Ia + b ArcCosA1 + d x2 EME a 1 - d x2 2 b Program code: IntA1Ha_.+b_.*ArcCos@1+d_.*x_^2DL,x_SymbolE := x*Cos@aH2*bLD*CosIntegral@Ha+b*ArcCos@1+d*x^2DLH2*bLDHSqrt@2D*b*Sqrt@-d*x^2DL + x*Sin@aH2*bLD*SinIntegral@Ha+b*ArcCos@1+d*x^2DLH2*bLDHSqrt@2D*b*Sqrt@-d*x^2DL ; FreeQ@8a,b,d<,xD Rule: 2: à 1 a + b ArcCosA- 1 + d x2 E âx á 1 a + b ArcCosA- 1 + d x2 E x SinA 2 b E CosIntegralA 2 b Ia + b ArcCosA- 1 + d x2 EME a 1 2 b d x2 x CosA 2 b E SinIntegralA 2 b Ia + b ArcCosA- 1 + d x2 EME a - âx 1 2 b Program code: IntA1Ha_.+b_.*ArcCos@-1+d_.*x_^2DL,x_SymbolE := x*Sin@aH2*bLD*CosIntegral@Ha+b*ArcCos@-1+d*x^2DLH2*bLDHSqrt@2D*b*Sqrt@d*x^2DL x*Cos@aH2*bLD*SinIntegral@Ha+b*ArcCos@-1+d*x^2DLH2*bLDHSqrt@2D*b*Sqrt@d*x^2DL ; FreeQ@8a,b,d<,xD d x2 Rules for integrands involving inverse sines and cosines 2. á 1 a + b ArcSinAc + d 1 1: á x2 E a + b ArcSinAc + d Rule: If c2 1, then a - Π x CosB 2b F - c SinB a 2b 9 â x when c2 1 â x when c2 1 x2 E F FresnelCB á 1 Π bc 1 a + b ArcSinAc + d x2 E F Π x ICosA 2 b E + c SinA 2 b EM FresnelSB a âx a + b ArcSinAc + d x2 E a 1 bc 2 1 bc CosB Π ArcSinAc + d x2 EF - c SinB a + b ArcSinAc + d x2 E F b c ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM 1 Program code: 1 IntA1Sqrt@a_.+b_.*ArcSin@c_+d_.*x_^2DD,x_SymbolE := -Sqrt@PiD*x*HCos@aH2*bLD-c*Sin@aH2*bLDL*FresnelC@1HSqrt@b*cD*Sqrt@PiDL*Sqrt@a+b*ArcSin@c+d*x^2DDD HSqrt@b*cD*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL Sqrt@PiD*x*HCos@aH2*bLD+c*Sin@aH2*bLDL*FresnelS@H1HSqrt@b*cD*Sqrt@PiDLL*Sqrt@a+b*ArcSin@c+d*x^2DDD HSqrt@b*cD*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D 2. á 1 a + b ArcCosAc + d 1: á Rule: 1 x2 E a + b ArcCosA1 + d â x when c2 1 x2 E âx á 1 a + b ArcCosA1 + d x2 E âx - 1 2 ArcSinAc + d x2 EF - Rules for integrands involving inverse sines and cosines 10 Π 1 - 2 a CosB dx b 2b Π 1 2 a SinB dx b 2b Program code: F SinB 1 F SinB 1 2 ArcCosA1 + d x2 EF FresnelCB 2 ArcCosA1 + d x2 EF FresnelSB 1 Πb 1 Πb a + b ArcCosA1 + d x2 E F a + b ArcCosA1 + d x2 E F IntA1Sqrt@a_.+b_.*ArcCos@1+d_.*x_^2DD,x_SymbolE := -2*Sqrt@PibD*Cos@aH2*bLD*Sin@ArcCos@1+d*x^2D2D*FresnelC@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@1+d*x^2DDDHd*xL 2*Sqrt@PibD*Sin@aH2*bLD*Sin@ArcCos@1+d*x^2D2D*FresnelS@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@1+d*x^2DDDHd*xL ; FreeQ@8a,b,d<,xD 2: á Rule: 1 a + b ArcCosA- 1 + d x2 E âx á Π 1 2 a SinB dx b 2b Π 1 2 dx a CosB b Program code: F CosB 2b 1 2 F CosB 1 2 1 a + b ArcCosA- 1 + d x2 E âx ArcCosA- 1 + d x2 EF FresnelCB ArcCosA- 1 + d x2 EF FresnelSB 1 Πb 1 Πb a + b ArcCosA- 1 + d x2 E F a + b ArcCosA- 1 + d x2 E F IntA1Sqrt@a_.+b_.*ArcCos@-1+d_.*x_^2DD,x_SymbolE := 2*Sqrt@PibD*Sin@aH2*bLD*Cos@ArcCos@-1+d*x^2D2D*FresnelC@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@-1+d*x^2DDDHd*xL 2*Sqrt@PibD*Cos@aH2*bLD*Cos@ArcCos@-1+d*x^2D2D*FresnelS@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@-1+d*x^2DDDHd*xL ; FreeQ@8a,b,d<,xD 3. à Ia + b ArcSinAc + d x2 EM â x when c2 1 ì n < - 1 n Rules for integrands involving inverse sines and cosines 1. á 11 1 Ia + b ArcSinAc + d x2 EM 32 1: á 1 Ia + b ArcSinAc + d Derivation: Integration by parts 32 x2 EM â x when c2 1 bdx Basis: If c2 1, then - -2 c d x2 -d2 x4 Ha+b ArcSin@c+d x2 DL32 Rule: If c2 1, then á â x when c2 1 ¶x 1 a+b ArcSin@c+d x2 D - 2 c d x2 - d2 x4 1 Ia + b ArcSinAc + d x2 EM âx - a + b ArcSinAc + d x2 E 32 bdx d b á x2 - 2 c d x2 - d2 x4 a + b ArcSinAc + d x2 E âx - 2 c d x2 - d2 x4 bdx c a 32 Π x CosB b c 2b a 32 F + c SinB Π x CosB b Program code: 2b a 2b F - c SinB a F FresnelCB 2b F FresnelSB c Πb c Πb a + b ArcSinAc + d x2 E a + b ArcSinAc + d x2 E F a + b ArcSinAc + d x2 E F - 1 CosB 2 ArcSinAc + d x2 EF - c SinB 1 CosB 2 1 2 ArcSinAc + d x2 EF - c SinB ArcSinAc + d x2 EF + 1 2 IntA1Ha_.+b_.*ArcSin@c_+d_.*x_^2DL^H32L,x_SymbolE := -Sqrt@-2*c*d*x^2-d^2*x^4DHb*d*x*Sqrt@a+b*ArcSin@c+d*x^2DDL HcbL^H32L*Sqrt@PiD*x*HCos@aH2*bLD+c*Sin@aH2*bLDL*FresnelC@Sqrt@cHPi*bLD*Sqrt@a+b*ArcSin@c+d*x^2DDD HCos@H12L*ArcSin@c+d*x^2DD-c*Sin@ArcSin@c+d*x^2D2DL + HcbL^H32L*Sqrt@PiD*x*HCos@aH2*bLD-c*Sin@aH2*bLDL*FresnelS@Sqrt@cHPi*bLD*Sqrt@a+b*ArcSin@c+d*x^2DDD HCos@H12L*ArcSin@c+d*x^2DD-c*Sin@ArcSin@c+d*x^2D2DL ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D ArcSinAc + d x2 EF Rules for integrands involving inverse sines and cosines 2. á 12 1 Ia + b ArcCosAc + d x2 EM 32 1: á â x when c2 1 1 âx Ia + b ArcCosA1 + d x2 EM 32 Derivation: Integration by parts bdx Basis: -2 d x2 -d2 Rule: á x4 Ha+b ArcCos@1+d 1 ¶x x2 DL32 a+b ArcCos@1+d x2 D - 2 d x2 - d2 x4 1 Ia + b ArcCosA1 + d x2 EM âx a + b ArcCosA1 + d x2 E 32 bdx d + b á x2 - 2 d x2 - d2 x4 a + b ArcCosA1 + d x2 E âx - 2 d x2 - d2 x4 bdx 1 1 32 dx b 1 1 Program code: 2b 32 F SinB a Π CosB 2 dx a Π SinB 2 b 2b 1 2 F SinB a + b ArcCosA1 + d x2 E ArcCosA1 + d x2 EF FresnelCB 1 2 ArcCosA1 + d x2 EF FresnelSB - 1 Πb 1 Πb a + b ArcCosA1 + d x2 E F + a + b ArcCosA1 + d x2 E F IntA1Ha_.+b_.*ArcCos@1+d_.*x_^2DL^H32L,x_SymbolE := Sqrt@-2*d*x^2-d^2*x^4DHb*d*x*Sqrt@a+b*ArcCos@1+d*x^2DDL 2*H1bL^H32L*Sqrt@PiD*Sin@aH2*bLD*Sin@ArcCos@1+d*x^2D2D*FresnelC@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@1+d*x^2DDDHd*xL + 2*H1bL^H32L*Sqrt@PiD*Cos@aH2*bLD*Sin@ArcCos@1+d*x^2D2D*FresnelS@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@1+d*x^2DDDHd*xL ; FreeQ@8a,b,d<,xD Rules for integrands involving inverse sines and cosines 2: á 13 1 âx Ia + b ArcCosA- 1 + d x2 EM 32 Derivation: Integration by parts Basis: Rule: bdx á 1 ¶x 2 d x2 -d2 x4 Ha+b ArcCos@-1+d x2 DL32 a+b ArcCos@-1+d x2 D 2 d x2 - d2 x4 1 Ia + b ArcCosA- 1 + d x2 EM âx 32 a + b ArcCosA- 1 + d bdx d x2 E + b á x2 2d x2 - d2 x4 a + b ArcCosA- 1 + d x2 E âx 2 d x2 - d2 x4 bdx 1 1 32 dx b 1 1 Program code: 2b 32 F CosB a Π SinB 2 dx a Π CosB 2 b 2b 1 2 F CosB 1 2 a + b ArcCosA- 1 + d x2 E ArcCosA- 1 + d x2 EF FresnelCB ArcCosA- 1 + d x2 EF FresnelSB - 1 Πb 1 Πb a + b ArcCosA- 1 + d x2 E F a + b ArcCosA- 1 + d x2 E F IntA1Ha_.+b_.*ArcCos@-1+d_.*x_^2DL^H32L,x_SymbolE := Sqrt@2*d*x^2-d^2*x^4DHb*d*x*Sqrt@a+b*ArcCos@-1+d*x^2DDL 2*H1bL^H32L*Sqrt@PiD*Cos@aH2*bLD*Cos@ArcCos@-1+d*x^2D2D*FresnelC@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@-1+d*x^2DDDHd*xL 2*H1bL^H32L*Sqrt@PiD*Sin@aH2*bLD*Cos@ArcCos@-1+d*x^2D2D*FresnelS@Sqrt@1HPi*bLD*Sqrt@a+b*ArcCos@-1+d*x^2DDDHd*xL ; FreeQ@8a,b,d<,xD Rules for integrands involving inverse sines and cosines 2. á 14 1 Ia + b ArcSinAc + d x2 EM 2 1: á â x when c2 1 1 Ia + b ArcSinAc + d x2 EM 2 â x when c2 1 Derivation: Integration by parts 2bdx Basis: If c2 1, then -2 c d Rule: If c2 x2 -d2 x4 1, then á Ha+b ArcSin@c+d x2 DL2 ¶x - 2 c d x2 - d2 x4 1 Ia + b ArcSinAc + d x2 EM âx - 2 d 2 b d x Ia + b ArcSinAc + d x2 EM 2 b d x Ia + b ArcSinAc + d x2 EM - 2b á x2 - 2 c d x2 - d2 x4 Ia + b ArcSinAc + d x2 EM x ICosA 2 b E + c SinA 2 b EM CosIntegralA 2 b Ia + b ArcSinAc + d x2 EME a - 2 c d x2 - d2 x4 - 1 a+b ArcSin@c+d x2 D a c 4 b2 ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM 1 1 x ICosA 2 b E - c SinA 2 b EM SinIntegralA 2 b Ia + b ArcSinAc + d x2 EME a a c 4 b2 ICosA 2 ArcSinAc + d x2 EE - c SinA 2 ArcSinAc + d x2 EEM 1 Program code: 1 IntA1Ha_.+b_.*ArcSin@c_+d_.*x_^2DL^2,x_SymbolE := -Sqrt@-2*c*d*x^2-d^2*x^4DH2*b*d*x*Ha+b*ArcSin@c+d*x^2DLL x*HCos@aH2*bLD+c*Sin@aH2*bLDL*CosIntegral@HcH2*bLL*Ha+b*ArcSin@c+d*x^2DLD H4*b^2*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL + x*HCos@aH2*bLD-c*Sin@aH2*bLDL*SinIntegral@HcH2*bLL*Ha+b*ArcSin@c+d*x^2DLD H4*b^2*HCos@ArcSin@c+d*x^2D2D-c*Sin@ArcSin@c+d*x^2D2DLL ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D 2. á Rule: 1 Ia + b ArcCosAc + d x2 EM 2 1: á â x when c2 1 1 Ia + b ArcCosA1 + d x2 EM 2 âx + âx Rules for integrands involving inverse sines and cosines 15 á 2 b d x Ia + b ArcCosA1 + d x2 EM + âx Ia + b ArcCosA1 + d x2 EM 2 x SinA 2 b E CosIntegralA 2 b Ia + b ArcCosA1 + d x2 EME a - 2 d x2 - d2 x4 1 2 1 2 b2 x CosA 2 b E SinIntegralA 2 b Ia + b ArcCosA1 + d x2 EME a - - d x2 1 2 b2 2 - d x2 Program code: IntA1Ha_.+b_.*ArcCos@1+d_.*x_^2DL^2,x_SymbolE := Sqrt@-2*d*x^2-d^2*x^4DH2*b*d*x*Ha+b*ArcCos@1+d*x^2DLL + x*Sin@aH2*bLD*CosIntegral@Ha+b*ArcCos@1+d*x^2DLH2*bLDH2*Sqrt@2D*b^2*Sqrt@H-dL*x^2DL x*Cos@aH2*bLD*SinIntegral@Ha+b*ArcCos@1+d*x^2DLH2*bLDH2*Sqrt@2D*b^2*Sqrt@H-dL*x^2DL ; FreeQ@8a,b,d<,xD 2: á Rule: 1 Ia + b ArcCosA- 1 + d x2 EM - á 1 Ia + b ArcCosA- 1 + d x2 EM âx 2 x CosA 2 b E CosIntegralA 2 b Ia + b ArcCosA- 1 + d x2 EME a 2 d x2 - d2 x4 2 b d x Ia + b ArcCosA- 1 + d x2 EM âx 2 2 1 2 b2 d x2 x SinA 2 b E SinIntegralA 2 b Ia + b ArcCosA- 1 + d x2 EME a - Program code: IntA1Ha_.+b_.*ArcCos@-1+d_.*x_^2DL^2,x_SymbolE := Sqrt@2*d*x^2-d^2*x^4DH2*b*d*x*Ha+b*ArcCos@-1+d*x^2DLL x*Cos@aH2*bLD*CosIntegral@Ha+b*ArcCos@-1+d*x^2DLH2*bLDH2*Sqrt@2D*b^2*Sqrt@d*x^2DL x*Sin@aH2*bLD*SinIntegral@Ha+b*ArcCos@-1+d*x^2DLH2*bLDH2*Sqrt@2D*b^2*Sqrt@d*x^2DL ; FreeQ@8a,b,d<,xD 3: à Ia + b ArcSinAc + d x2 EM â x when c2 1 ì n < - 1 ì n ¹ - 2 n Derivation: Inverted integration by parts twice Rule: If c2 1 ì n < - 1 ì n ¹ - 2, then 1 2 2 b2 d x2 Rules for integrands involving inverse sines and cosines 16 2 á Ia + b ArcSinAc + d x EM â x n x Ia + b ArcSinAc + d x2 EM - 2 c d x2 - d2 x4 Ia + b ArcSinAc + d x2 EM n+2 4 b2 Program code: Hn + 1L Hn + 2L n+1 2 b d Hn + 1L x + 4 b2 1 Hn + 1L Hn + 2L 2 à Ia + b ArcSinAc + d x EM Int@Ha_.+b_.*ArcSin@c_+d_.*x_^2DL^n_,x_SymbolD := x*Ha+b*ArcSin@c+d*x^2DL^Hn+2LH4*b^2*Hn+1L*Hn+2LL + Sqrt@-2*c*d*x^2-d^2*x^4D*Ha+b*ArcSin@c+d*x^2DL^Hn+1LH2*b*d*Hn+1L*xL 1H4*b^2*Hn+1L*Hn+2LL*Int@Ha+b*ArcSin@c+d*x^2DL^Hn+2L,xD ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D && RationalQ@nD && n<-1 && n¹-2 Int@Ha_.+b_.*ArcCos@c_+d_.*x_^2DL^n_,x_SymbolD := x*Ha+b*ArcCos@c+d*x^2DL^Hn+2LH4*b^2*Hn+1L*Hn+2LL Sqrt@-2*c*d*x^2-d^2*x^4D*Ha+b*ArcCos@c+d*x^2DL^Hn+1LH2*b*d*Hn+1L*xL 1H4*b^2*Hn+1L*Hn+2LL*Int@Ha+b*ArcCos@c+d*x^2DL^Hn+2L,xD ; FreeQ@8a,b,c,d<,xD && ZeroQ@c^2-1D && RationalQ@nD && n<-1 && n¹-2 3: à ArcSin@a xp Dn â x when n Î Z+ x Derivation: Integration by substitution Basis: ArcSin@a xp Dn x Rule: If n Î Z+ , then Program code: 1 p ArcSin@a xp Dn Cot@ArcSin@a xp DD ¶x ArcSin@a xp D à ArcSin@a xp Dn 1 âx x IntAArcSin@a_.*x_^p_D^n_.x_,x_SymbolE := 1p*Subst@Int@x^n*Cot@xD,xD,x,ArcSin@a*x^pDD ; FreeQ@8a,p<,xD && PositiveIntegerQ@nD IntAArcCos@a_.*x_^p_D^n_.x_,x_SymbolE := -1p*Subst@Int@x^n*Tan@xD,xD,x,ArcCos@a*x^pDD ; FreeQ@8a,p<,xD && PositiveIntegerQ@nD p SubstBà xn Cot@xD â x, x, ArcSin@a xp DF n+2 âx Rules for integrands involving inverse sines and cosines 4: à u ArcSinB c a+b 17 F âx m xn Derivation: Algebraic simplification Basis: ArcSin@zD ArcCscA 1z E Rule: Program code: à u ArcSinB m a b xn m F â x à u ArcCscB + F âx a + b xn c c c IntAu_.*ArcSinAc_.Ha_.+b_.*x_^n_.LE^m_.,x_SymbolE := Int@u*ArcCsc@ac+b*x^ncD^m,xD ; FreeQ@8a,b,c,n,m<,xD IntAu_.*ArcCosAc_.Ha_.+b_.*x_^n_.LE^m_.,x_SymbolE := Int@u*ArcSec@ac+b*x^ncD^m,xD ; FreeQ@8a,b,c,n,m<,xD Rules for integrands involving inverse sines and cosines 1 + b x2 F 18 n 5: á ArcSinB âx 1 + b x2 Derivation: Piecewise constant extraction and integration by substitution Basis: ¶x -b x2 x x ArcSinB Basis: -b x2 0 1+b x2 F 1+b x2 1 + b x2 F ¶x n 1 b SubstB ArcSin@xDn , x, 1-x2 Rule: 1 + b x2 F 1 + b x2 n á ArcSinB - b x2 bx Program code: âx 1 + b x2 1 + b x2 F n - b x2 SubstBà x á x ArcSinB - b x2 ArcSin@xDn â x, x, 1- x2 IntAArcSin@Sqrt@1+b_.*x_^2DD^n_.Sqrt@1+b_.*x_^2D,x_SymbolE := Sqrt@-b*x^2DHb*xL*Subst@Int@ArcSin@xD^nSqrt@1-x^2D,xD,x,Sqrt@1+b*x^2DD ; FreeQ@8b,n<,xD IntAArcCos@Sqrt@1+b_.*x_^2DD^n_.Sqrt@1+b_.*x_^2D,x_SymbolE := Sqrt@-b*x^2DHb*xL*Subst@Int@ArcCos@xD^nSqrt@1-x^2D,xD,x,Sqrt@1+b*x^2DD ; FreeQ@8b,n<,xD 1 + b x2 1 + b x2 F âx Rules for integrands involving inverse sines and cosines 19 6: à u fc ArcSin@a+b xD â x when n Î Z+ n Derivation: Integration by substitution Basis: F@x, ArcSin@a + b xDD 1 b SubstAFA- ab + Sin@xD , b xE Cos@xD, x, ArcSin@a + b xDE ¶x ArcSin@a + b xD Rule: If n Î Z+ , then àuf c ArcSin@a+b xDn Program code: 1 âx b SubstBà SubstBu, x, - a Sin@xD + b b F fc x Cos@xD â x, x, ArcSin@a + b xDF n Int@u_.*f_^Hc_.*ArcSin@a_.+b_.*x_D^n_.L,x_SymbolD := 1b*Subst@Int@ReplaceAll@u,x®-ab+Sin@xDbD*f^Hc*x^nL*Cos@xD,xD,x,ArcSin@a+b*xDD ; FreeQ@8a,b,c,f<,xD && PositiveIntegerQ@nD Int@u_.*f_^Hc_.*ArcCos@a_.+b_.*x_D^n_.L,x_SymbolD := -1b*Subst@Int@ReplaceAll@u,x®-ab+Cos@xDbD*f^Hc*x^nL*Sin@xD,xD,x,ArcCos@a+b*xDD ; FreeQ@8a,b,c,f<,xD && PositiveIntegerQ@nD 7. à v Ha + b ArcSin@uDL â x when u is free of inverse functions 1. à v Ha + b ArcSin@uDL â x when u is free of inverse functions 1: à ArcSinBa x2 + b c + d x2 F â x when b2 c 1 Derivation: Integration by parts and piecewise constant extraction Basis: If b2 c 1, then 1 - Ja x2 + b Basis: ¶x x -x2 b2 d+a2 x2 +2 a b Jb2 d+a2 x2 +2 ab c + d x2 N - x2 Jb2 d + a2 x2 + 2 a b 2 c+d x2 c+d x2 N 0 c + d x2 N Note: The resulting integrand is of the form x FAx2 E which can be integrated by substitution. Rule: If b2 c 1, then Rules for integrands involving inverse sines and cosines 20 c + d x F â x x ArcSinBa x + b à ArcSinBa x + b 2 2 2 x ArcSinBa x + b 2 c+dx F- Program code: 2 x c+dx F-á b2 d + a2 x2 + 2 a b - x2 Jb2 d + a2 x2 + 2 a b 2 c + d x2 c + d x2 N c+d á x2 x2 Jb d + 2 a - x2 c+d x2 Jb2 d+ a2 c + d x2 N x2 x Jb d + 2 a b2 d+ a2 +2ab x2 Int@ArcCos@a_.*x_^2+b_.*Sqrt@c_+d_.*x_^2DD,x_SymbolD := x*ArcCos@a*x^2+b*Sqrt@c+d*x^2DD + x*Sqrt@b^2*d+a^2*x^2+2*a*b*Sqrt@c+d*x^2DDSqrt@H-x^2L*Hb^2*d+a^2*x^2+2*a*b*Sqrt@c+d*x^2DLD* Int@x*Hb*d+2*a*Sqrt@c+d*x^2DLHSqrt@c+d*x^2D*Sqrt@b^2*d+a^2*x^2+2*a*b*Sqrt@c+d*x^2DDL,xD ; FreeQ@8a,b,c,d<,xD && EqQ@b^2*c,1D Derivation: Integration by parts Rule: If u is free of inverse functions, then Program code: à ArcSin@uD â x x ArcSin@uD - à Int@ArcSin@u_D,x_SymbolD := x*ArcSin@uD Int@SimplifyIntegrand@x*D@u,xDSqrt@1-u^2D,xD,xD ; InverseFunctionFreeQ@u,xD && Not@FunctionOfExponentialQ@u,xDD x ¶x u âx 1 - u2 c+d c + d x2 N +2ab Int@ArcSin@a_.*x_^2+b_.*Sqrt@c_+d_.*x_^2DD,x_SymbolD := x*ArcSin@a*x^2+b*Sqrt@c+d*x^2DD x*Sqrt@b^2*d+a^2*x^2+2*a*b*Sqrt@c+d*x^2DDSqrt@H-x^2L*Hb^2*d+a^2*x^2+2*a*b*Sqrt@c+d*x^2DLD* Int@x*Hb*d+2*a*Sqrt@c+d*x^2DLHSqrt@c+d*x^2D*Sqrt@b^2*d +a^2*x^2+2*a*b*Sqrt@c+d*x^2DDL,xD ; FreeQ@8a,b,c,d<,xD && EqQ@b^2*c,1D 2: à ArcSin@uD â x when u is free of inverse functions âx x2 N âx c+d x2 Rules for integrands involving inverse sines and cosines 21 Int@ArcCos@u_D,x_SymbolD := x*ArcCos@uD + Int@SimplifyIntegrand@x*D@u,xDSqrt@1-u^2D,xD,xD ; InverseFunctionFreeQ@u,xD && Not@FunctionOfExponentialQ@u,xDD 2: à Hc + d xLm Ha + b ArcSin@uDL â x when m ¹ - 1 ì u is free of inverse functions Derivation: Integration by parts Rule: If m ¹ - 1 ì u is free of inverse functions, then Program code: m à Hc + d xL Ha + b ArcSin@uDL â x Hc + d xLm+1 Ha + b ArcSin@uDL d Hm + 1L b - d Hm + 1L à Hc + d xLm+1 ¶x u âx 1 - u2 Int@Hc_.+d_.*x_L^m_.*Ha_.+b_.*ArcSin@u_DL,x_SymbolD := Hc+d*xL^Hm+1L*Ha+b*ArcSin@uDLHd*Hm+1LL bHd*Hm+1LL*Int@SimplifyIntegrand@Hc+d*xL^Hm+1L*D@u,xDSqrt@1-u^2D,xD,xD ; FreeQ@8a,b,c,d,m<,xD && NonzeroQ@m+1D && InverseFunctionFreeQ@u,xD && Not@FunctionOfQ@Hc+d*xL^Hm+1L,u,xDD && Not@FunctionOfExponentialQ Int@Hc_.+d_.*x_L^m_.*Ha_.+b_.*ArcCos@u_DL,x_SymbolD := Hc+d*xL^Hm+1L*Ha+b*ArcCos@uDLHd*Hm+1LL + bHd*Hm+1LL*Int@SimplifyIntegrand@Hc+d*xL^Hm+1L*D@u,xDSqrt@1-u^2D,xD,xD ; FreeQ@8a,b,c,d,m<,xD && NonzeroQ@m+1D && InverseFunctionFreeQ@u,xD && Not@FunctionOfQ@Hc+d*xL^Hm+1L,u,xDD && Not@FunctionOfExponentialQ Rules for integrands involving inverse sines and cosines 22 3: à v Ha + b ArcSin@uDL â x when u and à v â x are free of inverse functions Derivation: Integration by parts Rule: If u is free of inverse functions, let w Ù v âx, if w is free of inverse functions, then Program code: à v Ha + b ArcSin@uDL â x w Ha + b ArcSin@uDL - b à w ¶x u âx 1 - u2 Int@v_*Ha_.+b_.*ArcSin@u_DL,x_SymbolD := With@8w=IntHide@v,xD<, Dist@Ha+b*ArcSin@uDL,w,xD b*Int@SimplifyIntegrand@w*D@u,xDSqrt@1-u^2D,xD,xD ; InverseFunctionFreeQ@w,xDD ; FreeQ@8a,b<,xD && InverseFunctionFreeQ@u,xD && Not@MatchQ@v, Hc_.+d_.*xL^m_. ; FreeQ@8c,d,m<,xDDD Int@v_*Ha_.+b_.*ArcCos@u_DL,x_SymbolD := With@8w=IntHide@v,xD<, Dist@Ha+b*ArcCos@uDL,w,xD + b*Int@SimplifyIntegrand@w*D@u,xDSqrt@1-u^2D,xD,xD ; InverseFunctionFreeQ@w,xDD ; FreeQ@8a,b<,xD && InverseFunctionFreeQ@u,xD && Not@MatchQ@v, Hc_.+d_.*xL^m_. ; FreeQ@8c,d,m<,xDDD
© Copyright 2026 Paperzz