Pre-AP Algebra 2 Unit 9 - Lesson 3 – Properties of Logarithms Objectives: Students will be able to expand and condense logarithmic expressions using the properties of logs. Students will be able to prove the properties of logs. Materials: Hw #9-2 answers overhead; pair work and answers overhead; homework #9-3 Time 20 min Activity HW Review Put up answers to lesson #9-2 on the overhead; students check. 10 min Do Now Students work on check for understanding problems over homework. Direct Instruction: 30 min Background: If powers with same base are equal, then exponents are equal. 317 32x7 1) 2) 25 81 x If Logs with the same base are equal, then their arguments are equal. 3) log 2 16 log 2 2x Concepts: Special Cases (Matching Bases): logb M log b b M and b log b b M x blogb M x rewrite rewrite b b log b x log b M x M xM xM log b b M M b logb M M Examples: Simplify special cases: 4) 5) 6) 7) 6 log6 17 log5 52x 4 log 4 7 log10kt Explore More Properties: (Match the following) 1. log 4 log 2 2. log 4 log 5 3. log 6 log 2 4. 2 log 3 5. 3log 2 A. log 6 B. log 9 C. log 4 D. log 8 E. l og 3 F. log 20 Note how background info is used… Concepts: The 3 Log Properties 1) log b A log b C 2) log b A log b C 3) C log b A Condense: 8) log(6) 2log(2) log(3) 9) 10) log4 20 4log 4 x log 4 y log 2 20 2log 2 x log 2 3 3log 2 y Expand: 11) log(3x 4 ) 12) log 5 2 x y2 13) log 7 20 min 7 x y2 z Pair Work Students work on the Properties of Logs worksheet. Homework #9-3: Properties of Logarithms Pre-AP Algebra 2 9-3 DO NOW Name: __________________________ DO NOW 9-2 Check for Understanding Evaluate without a calculator 1) 2) 4) 3) Solve for 5) 7) 5 – Exemplary 4 – Proficient 3 – Nearly Proficient 2 – Emerging 1 – Beginning ( in each equation 6) ) Explain in your own words what is a logarithm? 8) Pre-AP Algebra 2 9-3 Pair Work Name: __________________________ Properties of Logarithms 1) Use logt A 0.25 and logt B 1.5 to find the exact value of each expression: B A a. logt AB b. log t c. logt A3 d. logt A3 B 2) Simplify each expression. a. log 8 8 9 b. log10 3x 7 c. 7log7 13 d. log 1000 3) Expand each expression using the properties of logs. a. log 2 9x c. log 7 6x 2 y b. log6 x5 d. log5 3 2 x Hint: rewrite as x to a power… 4) Condense each expression using the properties of logs. a. log5 8 log5 12 b. 2log x log5 c. 1 log81 log3 2 1 1 d. 2 log6 15 log6 5 log6 2 25 e. 1 2 log81 log y 2 3 f. log5 (x 1) log5 (x 3) 1 g. log x 3log y log z 5 h. log 2x 5x 2 3log x What went wrong?! For each answer, identify the line number that contains a mistake and explain in words what the problem is. Then, write out the correct steps to the side. 1) Correct Solution: log16 2 + log16 4 + 5log16 2 line 1: = log16 8 log16 2 5 line 2: = log16 8 log16 32 line 3: = log16 40 line 4: 1.204 Mistake in line # ____ Description of mistake: 2) Correct Solution: 2log14 2 + 2log14 7 line 1: = 4 log14 14 line 2: = log14 14 4 line 3: = 4 Mistake in line # ____ Description of mistake: 3) log y 2 + log y 3 = 36 line 1: log y 6 36 line 2: 6 y 36 line 3: y 2 Mistake in line # ____ Description of mistake: Correct Solution: Pre-AP Algebra 2 Homework #9-3 Name: __________________________ HW #9-3: Properties of Logarithms Part 1: Multiple Choice 4 1) What is the first incorrect step in simplifying log 4 ? 64 4 step1 : log 4 log 4 4 log 4 64 64 step 2 : 1 16 step 3 : 15 a. Step 1 b. Step 2 c. Step 3 d. Each step is correct 2) log640 = a. log10 6 log10 40 b. log10 6 log10 40 log10 40 d. log10 6 c. log10 6 log10 40 3) log 5 + 2 log x – ½ log y = y a. log 2 5x 5x 2 b. log 1 y 2 5x c. log y 5x 2 d. log y 4) What is the solution to the equation: 12 = 5 (log3 x) + 2 a. x = 9 b. x = 11 c. x = 2 d. x = 27 Part 2: Logs, Logs, Logs Find the exact value of each logarithm. Show all work on your own paper – don’t use a calculator. 1) log 7 70.5 x 2) log10 3/ 4 3) 6 log6 9 4) 10 log y 5) log 4 2 log 4 32 6) log8 16 log8 2 log 9log2 7 7) 2 2 8) 10log 6log 5 Expand the following logarithms into a sum and difference of logs. Change all powers into coefficients. 1 9) loga x 2 y 3/ 4 10) log a ab 4 11) log 6 3 12) log x 2 1 x 2 c a 14) log 2 2 b 13) log a u 2v 3 Condense each expression into a single logarithm by using the properties of logs. 15) log3 16 log3 4 16) 2log x log5 17) 7 log4 2 5log4 x 3log4 y 1 18) log3 2 log3 y 2 19) 1 1 log5 81 2log5 6 log5 4 4 2 x x 1 log 20) log x 1 x Solve each exponential equation. Find the exact answer and then use the change of base theorem and your calculator to estimate the answer to the thousandths place. Plug in your estimate to the original equation to check your result. 40 650 21) 1000(2x ) 450 350 22) 2 x 3 Part 3: STAAR Practice 1) A parabola is translated from f(x) = 4(x – 2)2 – 6 to f(x) = 4(x + 5)2 – 1. Describe the change. a.7 right and 5 down b. 7 left and 5 up c. 3 left and 5 up d. 3 right and 5 down 2) The formula (√ ) can be used to approximate the period of a pendulum, where is the pendulum’s length in feet and is the pendulum’s period in seconds. If a pendulum’s period is 1.6 seconds, which of the following is closest to the length of the pendulum? b. 1.4 ft b. 4.2 ft c. 2.1 ft d. 3.2 ft 3) A chemical compound’s concentration in milligrams per liter during a reaction can be modeled by the function below, where represents the number of seconds that have elapsed during the reaction. ( ) In this situation, what are the domain and range for this function? ( ) a. Domain: ; range: c. Domain: b.Domain: ; range: ( ) d.Domain: ( ) ; range: ; range: ( ) Lesson Name: Properties of Logarithms Date: _______________ Student: ________________________ Concepts Examples Concepts: Special Cases (Matching Bases): log b b M and Examples: 1) Simplify special cases: logb M b log b b M x blogb M x rewrite rewrite b x bM log b x log b M xM xM log b b M M b logb M M Note how background info is used… 2. log 4 log 5 3. log 6 log 2 4. 2 log 3 5. 3log 2 log6 17 1) 6 2) log5 52x 3) 4) 4 1) 317 32x 7 2) 25 81 x log 4 7 log10 kt If Logs with the same base are equal, then their arguments are equal. 3) log2 16 log2 2x 4 Explore More Properties: (Match the following) 1. log 4 log 2 Background If powers with same base are equal, then exponents are equal. A. log 6 B. log 9 C. log 4 D. log 8 E. l og 3 F. log 20 Concepts Concepts: Examples Condense: 2) The 3 Log Properties 1) log b A log b C 2) log b A log b C 1. log(6) 2log(2) log(3) 2. log4 20 4log 4 x log 4 y 3. log 2 20 2log 2 x log 2 3 3log 2 y 3) C log b A proof of multiplication property Let logb A M and logb C N Convert : b M A and b N C Expand: 4. log(3x 4 ) 5. log 5 2x y2 6. log 7 7 x y2 z log b AC log b (b M b N ) log b (b M N ) =M N logb A logb C logb AC logb A logb C
© Copyright 2026 Paperzz