Integral Calculus Assumed Knowledge Reminder — Standard Integrals Note — Four Basic Rules Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , x1 and sec2 x Example — Standard Integrals of e x , x1 and sec2 x 5.1 Assumed Knowledge Reminder — Standard Integrals 5.1 Assumed Knowledge Reminder — Standard Integrals I R ax n dx = a x n+1 + c. n+1 5.1 Assumed Knowledge Reminder — Standard Integrals I I a x n+1 + c. n+1 R 1 cos(ax + b) dx = sin(ax + b) + c. a R ax n dx = 5.1 Assumed Knowledge Reminder — Standard Integrals I I I a x n+1 + c. n+1 R 1 cos(ax + b) dx = sin(ax + b) + c. a R 1 sin(ax + b) dx = − cos(ax + b) + c. a R ax n dx = 5.1 Assumed Knowledge Reminder — Standard Integrals a x n+1 + c. n+1 R 1 I cos(ax + b) dx = sin(ax + b) + c. a R 1 I sin(ax + b) dx = − cos(ax + b) + c. a The notation F(x) is Rused to represent the antiderivative of f (x) so that F0 (x) = f (x) or f (x) dx = F(x) + c. I R ax n dx = Note — Four Basic Rules Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb a f (x) dx = F(b) − F(a) where F0 (x) = f (x). Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb 3. Rc a a f (x) dx = F(b) − F(a) where F0 (x) = f (x). f (x) dx = Rb a f (x) dx + Rc b f (x) dx, where a < b < c. Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb 3. Rc 4. Rb a a a f (x) dx = F(b) − F(a) where F0 (x) = f (x). f (x) dx = Rb a f (x) dx = − f (x) dx + Ra b f (x) dx. Rc b f (x) dx, where a < b < c. Note — Four Basic Rules 1. R R R R (af (x)) + (bg (x)) dx = a f (x) dx + b g (x) dx. 2. Rb 3. Rc 4. Rb a a a f (x) dx = F(b) − F(a) where F0 (x) = f (x). f (x) dx = Rb a f (x) dx = − f (x) dx + Ra b Rc b f (x) dx, where a < b < c. f (x) dx. Item 2 is often referred to as the Fundamental Theorem of Calculus. The integral represents the area under the curve f (x) between the points x = a and x = b. 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. I R 1 x dx = ln |x| + c. 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. I R 1 x I R sec2 x dx = tan x + c. dx = ln |x| + c. 1 x and sec2 x 5.2 Standard Integrals of e x , 1 x and sec2 x Definition — Standard Integrals of e x , I R e x dx = e x + c. I R 1 x I R sec2 x dx = tan x + c. 1 x and sec2 x dx = ln |x| + c. Note |x| is the modulus of x and |x| = x, when x ≥ 0 but |x| = −x, when x ≤ 0. Example — Standard Integrals of e x , 1 x and sec2 x Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx = 12 e 2x + 25 x 2 + c Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx = 12 e 2x + 25 x 2 + c 2. R 1 dx 5x + 4 Example — Standard Integrals of e x , 1 x and sec2 x Find the following indefinite and definite integrals. R 1. (e 2x + 5x) dx R R = e 2x dx + 5x dx = 12 e 2x + 25 x 2 + c 2. R 1 dx 5x + 4 = 1 5 ln |5x + 4| + c 3. R π 4 0 1 + sin2 x cos2 x dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 0 sec2 x dx + R π 4 0 tan2 x dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 sec2 x dx + R π 4 sec2 x dx + R π 4 0 0 tan2 x dx sec2 x − 1 dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 0 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 π 0 π = 2[tan x]04 − [x]04 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 π 0 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx π = 2[tan x]04 − [x]04 = 2(tan π4 − tan 0) − ( π4 − 0) 1 + sin2 x dx 3. 0 cos2 x Rπ R π4 sin2 x 1 = 04 dx + dx 0 cos2 x cos2 x R π 4 = R π 4 = R π 4 0 0 =2 R sec2 x dx + R π 4 sec2 x dx + R π 4 sec2 x dx − R π 4 0 π 0 0 tan2 x dx sec2 x − 1 dx π 4 0 1 dx π = 2[tan x]04 − [x]04 = 2(tan π4 − tan 0) − ( π4 − 0) =2− π 4 Further Examples Maths In Action: Book 1 Page 72 Exercise 2A/2B
© Copyright 2026 Paperzz