Math 101 – SOLUTIONS TO WORKSHEET 13 TRIGONOMETRIC INTEGRALS 0 0 0 Formulas to memorize: (sin x) = cos x, (cos x) = sin x, (tan x) = sec2 x, cos(2x) = 2 cos2 x − 1 sin(2x) = 2 sin x cos x cos2 x = 1 + cos(2x) 2 sin2 x = 1 − sin(2x) x (1) Evaluate the integrals ´ (a) sin4 x cos3 x dx Solution: The power of cosine is odd, while the power of sine is even, so let u = sin x, du = cos x dx. Then sin4 x = u4 , cos2 x = 1 − u2 and ˆ ˆ sin4 x cos3 x dx u7 u5 + +C u4 − u6 du = 5 7 1 1 sin5 x + sin7 x + C . 5 7 = (b) ˆ u4 (1 − u2 ) du = = ´ sin5 x cos4 x dx Solution: This time let u = cos x, du = − sin x. Then ˆ ˆ 5 4 sin x cos x dx sin2 x 2 cos4 x sin x dx ˆ 2 1 − u2 u4 du = 1 − 2u2 + u4 u4 du = ˆ = − ˆ 2 1 1 = 2u6 − u4 − u8 du = u7 − u5 − u9 + C 7 5 9 1 1 2 cos7 x − cos5 x − cos9 x + C = 7 5 9 (c) ´ sin4 x cos4 x dx Solution: We have sin x cos x = ˆ sin4 x cos4 x dx = = = = = 1 16 1 2 sin(2x) so ˆ sin4 (2x) dx 2 ˆ 1 1 − cos(4x) dx 16 2 ˆ 1 1 1 2 1 − cos(4x) + cos (4x) dx 16 2 4 ˆ 1 1 1 1 + cos(8x) x − sin(4x) + dx 16 8 64 2 1 1 1 1 x− sin(4x) + x+ sin(8x) + C . 16 128 128 64 · 8 Date: 1/2/2016, Worksheet by Lior Silberman. This instructional material is excluded from the terms of UBC Policy 81. 1 Solution: Use sin2 x = 1−cos(2x) , cos2 x = 1+cos(2x) to get 2 2 ˆ ˆ 1 2 2 sin4 x cos4 x dx = (1 − cos(2x)) (1 + cos(2x)) 16 ˆ 1 2 ((1 − cos(2x))(1 + cos(2x))) dx = 16 ˆ 2 1 = 1 − cos2 (2x) dx 16 ˆ 1 = 1 − 2 cos2 (2x) + cos(4x) dx 2 cos2 θ − 1 = cos(2θ) 16 ˆ 1 = (cos(4x) − cos(8x)) dx 16 1 1 sin(4x) − sin(8x) + C . = 64 128 (2) Powers of tangent and secant ´ π/4 (a) Evaluate 0 tan x dx ´ π/4 ´ π/4 sin x Solution: tan x = 0 cos x dx. We note that sin x dx is roughly d(cos x) = − sin x dx 0 so letting u = cos x we have ˆ π/4 ˆ x=π/4 − du u=cos(π/4) = − [log |u|]u=1 tan x = u 0 x=0 1 1 1 = − log( √ ) − log 1 = − log √ = log 2 . 2 2 2 ´ +π/4 (b) Evaluate −π/4 tan x dx Solution: Since tan(−x) = tan(x) and the domain is symmetric about x = 0, the integral vanishes. In detail, let u = −x. Then du = − dx abd ˆ x=+π/4 ˆ u=−π/4 tan x dx = tan(−u)(− du) x=−π/4 u=π/4 ˆ u=−π/4 = tan(u) du tan(−u) = − tan(u) u=π/4 ˆ ˆ u=π/4 = − tan(u) du u=−π/4 ˆ − ˆ a b = b a x=+π/4 = − tan(x) dx x=−π/4 2 substitute u = x.
© Copyright 2026 Paperzz