Neutrinoless Double Beta Decay Michael Duerr Max-Planck-Institut für Kernphysik, Heidelberg, Germany Kanazawa University, 17 February 2012 Based on JHEP 06 (2011) 091, Phys. Rev. D84 (2011) 093004, and arXiv:1201.3031 [hep-ph] together with: S. Choubey, M. Lindner, A. Merle, M. Mitra, W. Rodejohann, K. Zuber Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 1 Contents 1 2 3 4 5 Basics of neutrino physics and neutrinoless double beta decay On the quantitative impact of the Schechter–Valle theorem (MD, M. Lindner, A. Merle, JHEP 06 (2011) 091) Consistency test of neutrinoless double beta decay with one isotope (MD, M. Lindner, K. Zuber, Phys. Rev. D84 (2011) 093004) Lepton number and lepton flavor violation through color octet states (S. Choubey, MD, M. Mitra, W. Rodejohann, arXiv:1201.3031 [hep-ph]) Summary Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 2 Basics of neutrino physics and neutrinoless double beta decay Contents 1 2 3 4 5 Basics of neutrino physics and neutrinoless double beta decay On the quantitative impact of the Schechter–Valle theorem (MD, M. Lindner, A. Merle, JHEP 06 (2011) 091) Consistency test of neutrinoless double beta decay with one isotope (MD, M. Lindner, K. Zuber, Phys. Rev. D84 (2011) 093004) Lepton number and lepton flavor violation through color octet states (S. Choubey, MD, M. Mitra, W. Rodejohann, arXiv:1201.3031 [hep-ph]) Summary Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 3 Basics of neutrino physics and neutrinoless double beta decay Neutrinos are massive 9 -5 8 2 2 ∆m21 [10 eV ] 8.5 7.5 ★ ★ 7 6.5 0.3 0.5 0.4 0.6 0.7 0 0.01 0.02 0.03 0.04 0.05 0.06 2 2 sin θ13 tan θ12 -3 2.5 2 2 2 ∆m31 [10 eV ] 3 -2 ★ ★ -2.5 -3 0.3 0.5 1 2 3 0 0.01 0.02 0.03 0.04 0.05 0.06 2 2 tan θ23 sin θ13 Neutrino oscillation experiments show that neutrinos have a mass. 180 120 δCP 60 Oscillation parameters 0 ★ -60 Mohapatra et al., arXiv:hep-ph/0412099 -120 -180 0 0.01 0.02 0.03 0.04 0.05 0.06 2 sin θ13 Gonzalez-Garcia et al., JHEP 04 (2010) 056 ? ⇔ Michael Duerr (MPIK) Is lepton number conserved in Nature? → 0νββ Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 4 Basics of neutrino physics and neutrinoless double beta decay Basics of neutrinoless double beta decay Modes of ββ decay: (Z , A) → (Z + 2, A) + 2e − + 2ν̄e (Z , A) → (Z + 2, A) + 2e − Total decay rate of 0νββ: 2 uL N(E ) 6 W νL νL (0νββ) mee = 0ν −1 Γ0ν / ln 2 = (T1/2 ) = |mee |2 M0ν G 0ν (Q, Z ) dL (2νββ) P i 2 Uei mi M0ν : nuclear matrix element G 0ν (Q, Z ): phase space factor 2νββ 0νββ eL− eL− W dL Michael Duerr (MPIK) - uL Neutrinoless Double Beta Decay Q E Kanazawa University, 17 Feb 2012 5 Basics of neutrino physics and neutrinoless double beta decay Basics of neutrinoless double beta decay Modes of ββ decay: (Z , A) → (Z + 2, A) + 2e − + 2ν̄e (Z , A) → (Z + 2, A) + 2e − (2νββ) (0νββ) Total decay rate of 0νββ: mee = Nucleus 76 Ge 100 Mo 130 Te 136 Xe G 0ν (Q, Z )/10−25 y−1 eV 0.30 2.19 2.12 2.26 −2 i 2 Uei mi M0ν : nuclear matrix element 2 0ν −1 Γ0ν / ln 2 = (T1/2 ) = |mee |2 M0ν G 0ν (Q, Z ) P G 0ν (Q, Z ): phase space factor Experiment Nucleus Heidelberg-Moscow IGEX CUORICINO NEMO-3 NEMO-3 NEMO-3 NEMO-3 NEMO-3 76 Ge 76 Ge 130 Te 48 Ca 82 Se 96 Zr 100 Mo 150 Nd 0ν T1/2 ≥ 1.9 × 1025 y ≥ 1.57 × 1025 y ≥ 0.3 × 1025 y ≥ 1.3 × 1022 y ≥ 2.1 × 1023 y ≥ 8.6 × 1021 y ≥ 5.8 × 1023 y ≥ 1.8 × 1022 y 0νββ in colored seesaw model Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 5 Basics of neutrino physics and neutrinoless double beta decay Basics of neutrinoless double beta decay Modes of ββ decay: (Z , A) → (Z + 2, A) + 2e − + 2ν̄e (Z , A) → (Z + 2, A) + 2e − Total decay rate of 0νββ: 2 uL N(E ) 6 W νL νL (0νββ) mee = 0ν −1 Γ0ν / ln 2 = (T1/2 ) = |mee |2 M0ν G 0ν (Q, Z ) dL (2νββ) P i 2 Uei mi M0ν : nuclear matrix element G 0ν (Q, Z ): phase space factor 2νββ 0νββ eL− eL− W dL Michael Duerr (MPIK) - uL Neutrinoless Double Beta Decay Q E Kanazawa University, 17 Feb 2012 5 Basics of neutrino physics and neutrinoless double beta decay Basics of neutrinoless double beta decay Modes of ββ decay: (Z , A) → (Z + 2, A) + 2e − + 2ν̄e (Z , A) → (Z + 2, A) + 2e − Total decay rate of 0νββ: dL Michael Duerr (MPIK) (0νββ) mee = 2 0ν −1 Γ0ν / ln 2 = (T1/2 ) = |mee |2 M0ν G 0ν (Q, Z ) dL (2νββ) uL N(E ) 6 P i 2 Uei mi M0ν : nuclear matrix element G 0ν (Q, Z ): phase space factor 2νββ 0νββ eL− eL− - uL Neutrinoless Double Beta Decay Q E Kanazawa University, 17 Feb 2012 5 Basics of neutrino physics and neutrinoless double beta decay New Physics mechanisms for the black box Higgs triplet model Mass mechanism dL uL dL uL νL W e− ũ u G̃ νL uL Michael Duerr (MPIK) G̃ δ −− eL− W W dL dc eL− W eL− SUSY dL Neutrinoless Double Beta Decay eL− uL u ũ dc Kanazawa University, 17 Feb 2012 e− 6 On the quantitative impact of the Schechter–Valle theorem Contents 1 2 3 4 5 Basics of neutrino physics and neutrinoless double beta decay On the quantitative impact of the Schechter–Valle theorem (MD, M. Lindner, A. Merle, JHEP 06 (2011) 091) Consistency test of neutrinoless double beta decay with one isotope (MD, M. Lindner, K. Zuber, Phys. Rev. D84 (2011) 093004) Lepton number and lepton flavor violation through color octet states (S. Choubey, MD, M. Mitra, W. Rodejohann, arXiv:1201.3031 [hep-ph]) Summary Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 7 On the quantitative impact of the Schechter–Valle theorem The Schechter–Valle theorem Assumptions: Connects 0νββ and a non-zero Majorana neutrino mass. u quark, d quark and e are massive standard left-handed interaction exists: (νeL γµ eL + uL γµ dL ) W µ Schechter and Valle, Phys. Rev. D25 (1982) 2951 W W d u u d 0νββ νe Michael Duerr (MPIK) e− e− Neutrinoless Double Beta Decay νe Kanazawa University, 17 Feb 2012 8 On the quantitative impact of the Schechter–Valle theorem No symmetry can protect zero Majorana mass Assume an unbroken discrete symmetry: νeL → ην νeL , qL → ηq qL (q = u, d), eL → ηe eL , WL+µ → ηW WL+µ . Majorana mass term forbidden: ην2 6= 1 Invariance of the left-handed interaction: ην∗ ηe ηW = ηu∗ ηd ηW = 1 Existence of 0νββ: ηu2 ηd∗2 ηe2 = 1 These equations cannot be solved simultaneously! Takasugi, Phys. Lett. B149 (1984) 372, Nieves, Phys. Lett. B147 (1984) 375 Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 9 On the quantitative impact of the Schechter–Valle theorem Size of the neutrino mass W W d u u d 0νββ e− νe e− νe How big is this mass? Estimation: mν ∼ Michael Duerr (MPIK) 1 MeV5 4 (16π 2 )4 MW Neutrinoless Double Beta Decay ≈ 10−23 eV Kanazawa University, 17 Feb 2012 10 On the quantitative impact of the Schechter–Valle theorem Parameterization of the black box Most general Lorentz-invariant Lagrangian for 0νββ (point-like operators): L= GF2 −1 m (1 JJj + 2 J µν Jµν j + 3 J µ Jµ j + 4 J µ Jµν j ν + 5 J µ Jjµ ) 2 p with J = u (1 ± γ5 ) d, J µ = uγ µ (1 ± γ5 ) d etc. |1 | from [Pas et. al, 2001] our calc. 3× 10−7 2.0 × |2 | 2× 10−7 RLz |LRz 3 |, |3 | 1× 10−8 e c (p + k1 ) |4 | 2× 10−8 |5 | 2 × 10−7 10−8 d(q1 ) d(q2 ) u(k1 + q1 ) Michael Duerr (MPIK) 4× 10−8 1.5 × W (k1 ) ν c (p) 10−9 RRz |LLz 3 |, |3 | Pas et al., Phys. Lett. B498 (2001) 35 W (k2 ) u(k2 + q2 ) e(p − k2 ) Neutrinoless Double Beta Decay ν(p) Kanazawa University, 17 Feb 2012 11 On the quantitative impact of the Schechter–Valle theorem Decay mediated by the operator JRσ JσR jL Choose JRσ JRσ jL ∝ uγ σ PR duγσ PR dePL e c Mass correction δmν = 128g 4 GF2 3 mu2 me2 md2 2 2 F M /µ W (16π 2 )4 mp For µ = 100 MeV: d(q1 ) d(q2 ) W (k1 ) u(k1 + q1 ) ν c (p) Michael Duerr (MPIK) δmν = 9.4 × 10−25 eV e c (p + k1 ) W (k2 ) u(k2 + q2 ) e(p − k2 ) Neutrinoless Double Beta Decay ν(p) Kanazawa University, 17 Feb 2012 12 On the quantitative impact of the Schechter–Valle theorem Discussion The radiatively generated masses are many orders of magnitude smaller than the observed neutrino masses. Lepton number violating New Physics (at tree-level not necessarily related to neutrino masses) may induce black box operators which explain an observed rate of 0νββ. The smallness of the black box contributions implies that other neutrino mass terms (Dirac/Majorana) must exist. ν’s mainly Majorana: Mass mechanism is the dominant part of the black box operator. ν’s mainly Dirac: Other lepton number violating New Physics dominates 0νββ. Translating an observed rate of 0νββ into neutrino masses would be completely misleading. Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 13 Consistency test of 0νββ Contents 1 2 3 4 5 Basics of neutrino physics and neutrinoless double beta decay On the quantitative impact of the Schechter–Valle theorem (MD, M. Lindner, A. Merle, JHEP 06 (2011) 091) Consistency test of neutrinoless double beta decay with one isotope (MD, M. Lindner, K. Zuber, Phys. Rev. D84 (2011) 093004) Lepton number and lepton flavor violation through color octet states (S. Choubey, MD, M. Mitra, W. Rodejohann, arXiv:1201.3031 [hep-ph]) Summary Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 14 Consistency test of 0νββ The problem Assume, a line is seen in 0νββ experiments. Question: Is it due to 0νββ or some other nuclear physics process? Usual solution: Do a second experiment with another isotope. But: Expensive for ton-scale experiments. Can 0νββ be confirmed within the same experiment? Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 15 Consistency test of 0νββ 0νββ to excited states All 0νββ isotopes have an accessible excited 0+ state. 76 As @ β @ @ 0+ 76 Ge PP 6 @ PP PP @ PP + @ PP q 01 P @ ββ 6 @ Q γ @ + @ ? 21 E (0+ ) @ 1 @ γ @ R ? g.s. ? ? @ 76 Se Michael Duerr (MPIK) Ratio of decay rates: Γ0+ 1 Γg.s. = n (Q−E (0+ 1 )) Qn × 0+ M1 Mg.s. 2 n = 11 (2νββ) n = 5 (0νββ) N(E ) 6 2νββ 0νββ 2νββ + 2γ 0νββ + 2γ Q − E (0+ 1) Neutrinoless Double Beta Decay - Q E Kanazawa University, 17 Feb 2012 16 Consistency test of 0νββ Which isotopes are best? 0+ Decay mode Q [keV] E (0+ 1 ) [keV] Mg.s. 0ν M0ν1 Γ0+ /Γg.s. 48 Ca→48 Ti 20 22 76 Ge→76 Se 32 34 82 Se→82 Kr 34 36 96 Zr→96 Mo 40 42 100 Mo→100 Ru 42 44 110 Pd→110 Cd 46 48 116 Cd→116 Sn 48 50 124 Sn→124 Te 50 52 130 Te→130 Xe 52 54 136 Xe→136 Ba 54 56 150 Nd→150 Sm 60 62 4274 ± 4 2039.04 ± 0.16 2995.5 ± 1.9 3347.7 ± 2.2 3034.40 ± 0.17 2004 ± 11 2809 ± 4 2287.8 ± 1.5 2527.518 ± 0.013 2457.83 ± 0.37 3371.38 ± 0.20 2997 1122 1488 1148 1130 1473 1757 1657 1794 1579 740 5.465 4.412 2.530 3.732 3.623 2.782 3.532 4.059 3.352 2.321 2.479 1.247 0.044 0.419 1.599 1.047 2.721 3.090 1.837 0.395 3.79 × 10−3 2.58 × 10−3 3.70 × 10−5 1.23 × 10−3 2.54 × 10−4 1.04 × 10−3 9.46 × 10−4 1.19 × 10−3 1.76 × 10−3 8.39 × 10−3 1 Q-values from [Audi et al., 2002; Rahaman et al., 2008; Redshaw et al., 2007, 2009; McCowan and Barber, 2010; Kolhinen et al., 2010] IBM-2 nuclear matrix elements from [Barea and Iachello, 2009; Iachello, 2010] Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 17 Consistency test of 0νββ Which isotopes are best? 0+ Decay mode Q [keV] E (0+ 1 ) [keV] Mg.s. 0ν M0ν1 Γ0+ /Γg.s. 48 Ca→48 Ti 20 22 76 Ge→76 Se 32 34 82 Se→82 Kr 34 36 96 Zr→96 Mo 40 42 100 Mo→100 Ru 42 44 110 Pd→110 Cd 46 48 116 Cd→116 Sn 48 50 124 Sn→124 Te 50 52 130 Te→130 Xe 52 54 136 Xe→136 Ba 54 56 150 Nd→150 Sm 60 62 4274 ± 4 2039.04 ± 0.16 2995.5 ± 1.9 3347.7 ± 2.2 3034.40 ± 0.17 2004 ± 11 2809 ± 4 2287.8 ± 1.5 2527.518 ± 0.013 2457.83 ± 0.37 3371.38 ± 0.20 2997 1122 1488 1148 1130 1473 1757 1657 1794 1579 740 5.465 4.412 2.530 3.732 3.623 2.782 3.532 4.059 3.352 2.321 2.479 1.247 0.044 0.419 1.599 1.047 2.721 3.090 1.837 0.395 3.79 × 10−3 2.58 × 10−3 3.70 × 10−5 1.23 × 10−3 2.54 × 10−4 1.04 × 10−3 9.46 × 10−4 1.19 × 10−3 1.76 × 10−3 8.39 × 10−3 1 Q-values from [Audi et al., 2002; Rahaman et al., 2008; Redshaw et al., 2007, 2009; McCowan and Barber, 2010; Kolhinen et al., 2010] IBM-2 nuclear matrix elements from [Barea and Iachello, 2009; Iachello, 2010] Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 17 Consistency test of 0νββ Results for 76 Ge and 150 Nd 0+ Decay mode Q [keV] E (0+ 1 ) [keV] Mg.s. 0ν M0ν1 Γ0+ /Γg.s. 76 Ge→76 Se 32 34 150 Nd→150 Sm 60 62 2039.04 ± 0.16 3371.38 ± 0.20 1122 740 5.465 2.321 2.479 0.395 3.79 × 10−3 8.39 × 10−3 1 Q-values from [Audi et al., 2002; Rahaman et al., 2008; Redshaw et al., 2007, 2009; McCowan and Barber, 2010; Kolhinen et al., 2010] IBM-2 nuclear matrix elements from [Barea and Iachello, 2009; Iachello, 2010] 76 Ge: 917 keV electron energy, 2 gammas with 559.1 keV and 563.2 keV; 1–2 excited state transitions correspond to 264–528 ground state transitions. 150 Nd: 2631 keV electron energy, 2 gammas with 334 keV and 406 keV; 1–2 excited state transitions correspond to 120–240 ground state transitions. Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 18 Consistency test of 0νββ Results for 76 Ge and 150 Nd 76 Ge 150 Nd background free Mt = 2.0 t y Mt = 3.4 t y background limited Mt = 121 t y Mt = 30.9 kt y background free Mt = 48.3 t y Mt = 14.2 t y background limited Mt = 69.9 kt y Mt = 543 kt y 0ν = 2.23 × 1025 y Klapdor’s claim T1/2 |mee | = 50 meV Half-life sensitivities: (T1/2 (T1/2 )−1 )−1 M: detector mass ∝ aMt (background free) q ∝ a Michael Duerr (MPIK) Mt B∆E (background limited) Neutrinoless Double Beta Decay a: isotopical abundance : efficiency for detection B: background index ∆E : energy resolution @ peak Kanazawa University, 17 Feb 2012 19 Consistency test of 0νββ Reach of the consistency test |mee | [eV] 1 0.1 0.01 sin2θ13= 0.013 HD-Moscow 1000 kg Ge consistency test 1000 kg Ge 0.001 0.0001 0.001 0.01 m1 [eV] 0.1 ⇒ Method works down to 100 meV. Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 20 LNV and LFV through color octets Contents 1 2 3 4 5 Basics of neutrino physics and neutrinoless double beta decay On the quantitative impact of the Schechter–Valle theorem (MD, M. Lindner, A. Merle, JHEP 06 (2011) 091) Consistency test of neutrinoless double beta decay with one isotope (MD, M. Lindner, K. Zuber, Phys. Rev. D84 (2011) 093004) Lepton number and lepton flavor violation through color octet states (S. Choubey, MD, M. Mitra, W. Rodejohann, arXiv:1201.3031 [hep-ph]) Summary Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 21 LNV and LFV through color octets Motivation TeV-scale particles can lead to the same contribution to 0νββ as sub-eV-scale neutrinos: Al ' (Mee = | P GF2 X U 2 m −5 ei i ' (2.7 TeV) 2 i − m2 hp i i Uei2 mi | ' 0.5 eV and hp 2 i ' 0.01 GeV−2 mi2 ) contribution of two heavy scalars or vectors with mass M1 and a heavy fermion with mass M2 : A∝ Michael Duerr (MPIK) 1 M14 M2 Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 22 LNV and LFV through color octets Colored seesaw scenario – the model Extend SM by color octet scalar and fermions Φ ∼ (8, 2, +1) and Ψi ∼ (8, 1, 0) Lagrangian of the new sector: 1 −Lν = Yναi L̄α iσ2 Tr(Φ∗ Ψi ) + MΨi Tr(Ψ̄ci Ψi ) + λΦH Tr(Φ† H)2 + H.c. 2 ⇒ no neutrino mass at tree-level. Coupling of Φ to quarks: LQ = d̄R κD Φ† QL + ūR κU QL Φ + H.c. Perez, Wise, Phys. Rev. D 80 (2009) 053006, Perez et al., JHEP 01 (2011) 046. Color octets ⇒ sizable cross sections at LHC expected. Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 23 LNV and LFV through color octets Colored seesaw scenario – neutrino mass One-loop neutrino mass matrix hH 0 i hH 0 i Φ0 Mναβ = X v2 i λΦH αi βi Y Y I(MΦ , MΨi ) 16π 2 ν ν Φ0 νβ να Ψi with loop function Ii ≡ I(MΦ , MΨi ) = MΨi 2 −M 2 +M 2 ln( MΦ Ψ Ψ i i 2 −M 2 )2 (MΦ Ψi Ψi M2 Ψi M2 Φ ) Express Yukawas as Yν = q 16π 2 1 λΦH v U q Mνd R q (I d )−1 ĉ2 ĉ3 ĉ2 ŝ3 ŝ2 with Casas–Ibarra matrix R = −ĉ1 ŝ3 − ŝ1 ŝ2 ĉ3 ĉ1 ĉ3 − ŝ1 ŝ2 ŝ3 ŝ1 ĉ2 ŝ1 ŝ3 − ĉ1 ŝ2 ĉ3 −ŝ1 ĉ3 − ĉ1 ŝ2 ŝ3 ĉ1 ĉ2 Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 24 LNV and LFV through color octets Neutrinoless double beta decay direct contribution indirect contribution u d Φ d u − W e Ψi − ν Ψi e− e− W Φ− u d A' 2 y11 4 MΦ Al ' i MΨ i for Rij = δij : A ' 2 16π 2 y11 4 λPhiH v 2 MΦ 76 Ge: u d P (Yνei )2 Current limit for e− ν P mi Uei2 Mee GF2 hp 2i i MΨ Ii i T1/2 ≥ 1.9 × 1025 yrs Half-life formula Klapdor-Kleingrothaus et al., Eur. Phys. J. A12 (2001) 147 Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 25 LNV and LFV through color octets Lepton flavor violation γ Br(lα → lβ γ) = 3αem 4 4πGF2 MΦ P 2 i Yνβi (Yναi )∗ F(xi ) Φ− Φ− Ψi lα with F(xi ) = 1−6xi +3xi2 +2xi3 −6xi2 ln(xi ) 12(xi −1)4 and xi = 2 MPsi 2 MΦ i lβ . For choice Rij = δij 3αem (16π 2 )2 Br(µ → eγ) = 4πGF2 MΦ4 λ2ΦH v 4 2 X F(x ) i ∗ Uei Uµi mi Ii i Current limit at 90% C.L.: Br(µ → eγ) ≤ 2.4 × 10−12 MEG Collaboration, Phys. Rev. Lett. 107 (2011) 171801 Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 26 LNV and LFV through color octets Case of three color octet fermions – setup Minimal deviation from tri-bimaximal mixing with non-zero θ13 : −iδ √1 λe − √26 3 1 √ √λ iδ √1 + √λ e iδ √1 diag(1, e iα , e i(β+δ) ) − UPMNS ' 6 − 3e 3 6 2 √1 + √λ e iδ √1 − √λ e iδ √1 6 6 3 6 2 G2 •Al ' F2 hp i y 2 16π 2 •A ' 114 MΦ λΦH v 2 2m1 m2 i2α + e + m3 λ2 e i2β 3 3 2m1 m2 e i2α m3 λ2 e i2β + + 3I1 MΨ1 3I2 MΨ2 I3 MΨ3 ! √ m1 F(x1 ) 2) I1 √ m2 F(x2 ) m3 F(x3 ) 2 +( 2e i2α + λe i2α+iδ ) − 3e i2β+iδ λ I2 I3 • Br(µ → eγ) ∝ (2e iδ λ − Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 27 LNV and LFV through color octets Case of three color octet fermions – results 1 Ratio of particle physics amplitudes A/Al normal hierarchy inverted hierarchy sin2 θ13 6= 0 10000 100 100 1 1 0.01 0.01 0.0001 0.0001 10−3 10−2 10−1 10−3 m1 [eV] Michael Duerr (MPIK) λΦH = 10−8 λΦH = 10−5 λΦH = 10−2 10000 A/Al A/Al sin2 θ13 6= 0 λΦH = 10−8 λΦH = 10−5 λΦH = 10−2 10−2 10−1 m3 [eV] Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 28 LNV and LFV through color octets Case of three color octet fermions – results 2 Effective masses effective mass Mee = P i Uei2 mi “color effective mass” 2 sin θ13 = 0.013 100 102 10 hp2 i A [eV] G2F |Mee | [eV] 10−1 10−2 10−3 10−4 0.0001 hp 2 i A GF2 sin2 θ13 6= 0 inverted hierarchy normal hierarchy 0 10−2 10−4 10−6 10−8 10−3 0.001 0.01 0.1 0.3 10−2 10−1 m1 [eV] m1 [eV] Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 29 Summary Contents 1 2 3 4 5 Basics of neutrino physics and neutrinoless double beta decay On the quantitative impact of the Schechter–Valle theorem (MD, M. Lindner, A. Merle, JHEP 06 (2011) 091) Consistency test of neutrinoless double beta decay with one isotope (MD, M. Lindner, K. Zuber, Phys. Rev. D84 (2011) 093004) Lepton number and lepton flavor violation through color octet states (S. Choubey, MD, M. Mitra, W. Rodejohann, arXiv:1201.3031 [hep-ph]) Summary Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 30 Summary Summary Neutrinoless double beta decay is a sensitive test for lepton number violating New Physics. The black box theorem is valid, but it is only of academic interest: Radiatively generated masses are far too small to account for the neutrino masses observed in oscillation experiments. Other operators must give the leading contribution to neutrino masses, which could be of Dirac or Majorana type. Using 0νββ to the first excited 0+ final state in addition to the ground state transition, it is possible to perform a crosscheck and discriminate unknown nuclear background lines from 0νββ within one experiment. In the colored seesaw model, “direct” and “indirect” contributions to 0νββ exist: Depending on the model parameters, either of the contributions can be dominant. Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 31 Summary Thank You! Thanks for your attention! Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 32 Backup slides Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 1 Oscillation parameters parameter 2 [10−5 eV2 ] ∆m21 best fit ±1σ 7.59+0.20 −0.18 2σ 7.24–7.99 3σ 7.09–8.19 2 [10−3 eV2 ] ∆m31 2.50+0.09 −0.16 −(2.40+0.08 −0.09 ) 2.25 − 2.68 −(2.23 − 2.58) 2.14 − 2.76 −(2.13 − 2.67) sin2 θ12 0.312+0.017 −0.015 0.28–0.35 0.27–0.36 sin2 θ23 0.52+0.06 −0.07 0.52 ± 0.06 0.41–0.61 0.42–0.61 0.39–0.64 sin2 θ13 0.013+0.007 −0.005 0.016+0.008 −0.006 0.004–0.028 0.005–0.031 0.001–0.035 0.001–0.039 0 − 2π 0 − 2π δ −0.61+0.75 −0.65 π −0.41+0.65 −0.70 π upper (lower) values refer to normal (inverted) hierarchy back Schwetz et al., New J. Phys. 13 (2011) 109401 Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 2 Effective mass |mee | Normal hierarchy: m2 = mee = q 2 und m = m12 + ∆m21 3 2 c13 2 m1 c12 + 2 e i2α s12 q m12 q + 2 m12 + ∆m31 2 ∆m21 + sin2 θ13 = 0 best fit values range 3σ values range 10−1 |mee | [eV] |mee | [eV] 2 m12 + ∆m31 100 10−2 10−3 10−4 0.0001 q sin2 θ13 = 0.053 100 10−1 2 e i2β s13 0.001 0.01 0.1 0.3 10−2 10−3 10−4 0.0001 m1 [eV] Michael Duerr (MPIK) best fit values range 3σ values range 0.001 0.01 0.1 0.3 m1 [eV] Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 3 SV – decay mediated by the operator JL JL jL Choose JL JL jL ∝ uPL duPL dePL e c Mass correction δmν = Σ(p/ = mν ) ∝ p 2 p/=mν Physical neutrino mass mν is solution of p/ − Σ(p/)|p/=mν = 0 Result: δmν = 0 d(q1 ) d(q2 ) W (k1 ) u(k1 + q1 ) ν c (p) Michael Duerr (MPIK) e c (p + k1 ) W (k2 ) u(k2 + q2 ) e(p − k2 ) Neutrinoless Double Beta Decay ν(p) Kanazawa University, 17 Feb 2012 4 Consistency test – experimental considerations What do we have to look for? 0+ 1 final state: two e and two γ ground state transition: only two e ⇒ Detector geometry must be such that both transitions can be distinguished. Excited 0+ 1 states de-excite via + + 0 → 2 → 0+ ⇒ γγ angular correlation 5 W (θ) = × (1 − 3 cos2 θ + 4 cos4 θ) 8 Michael Duerr (MPIK) 1.2 W (θ) 1.0 0.8 0.6 0.4 0.2 0 −π Neutrinoless Double Beta Decay −π/2 0 π/2 π Kanazawa University, 17 Feb 2012 5 Consistency test – possible backgrounds β decay of intermediate nucleus [may be produced by (p, n) reactions] to excited states will lead to the same gamma signature and energy spectra will overlap → solution: measure electron energy very accurately, or build detector which can distinguish one or two electrons (tracking capabilities). External backgrounds: signal of the decay to excited states is a triple coincidence, with well-defined energies of all involved particles. Additionally, angular correlations exist. ⇒ hard to be mimicked by some other process Major background: 2νββ decay into the 0+ 1 excited state ⇒ crucial experimental quantity: energy resolution. Michael Duerr (MPIK) Neutrinoless Double Beta Decay Kanazawa University, 17 Feb 2012 6
© Copyright 2026 Paperzz