Name: ____________________________________________ Prerequisite Facts and Formulas AP Calculus AB Line Equations (slope m) Parabola Equations Standard: y = ax2 + bx + c Vertex (h,k): y = a(x – h)2 + k Center: (h,k) Radius: r x= Quadratic Factoring with Squares (x – h)2 + (y – k)2 = r2 −𝐛±√𝐛𝟐 −𝟒𝐚𝐜 𝟐𝐚 a2 – b2 = (a + b)(a – b) a2 + 2ab + b2 = (a + b)2 a3 + b3 = (a + b)(a2 – ab + b2) x0 = 1 a3 – b3 = (a – b)(a2 + ab + b2) 𝐱𝐦 xmxn = xm + n 𝐚 𝐱 (ab)x = axbx 𝐚𝐱 bx = a ⇒ logb(a) = x Logarithm Product and Quotient logb(mn) = logb(m) + logb(n) Power Inside a Logarithm 𝐲 𝐦 𝐦⁄ 𝐧 ln(x) = loge(x) 𝐦 logb( 𝐧 ) = logb(m) – logb(n) 𝐥𝐨𝐠 ( 𝐚) 𝐱 60° x 45° x√𝟐 2x x 30° 45° x sin-1( Tangent: 𝐱 𝐧 √𝐱 𝐦 = ( √𝐱 ) = 𝐱 logb(a) = 𝐥𝐨𝐠𝐱 (𝐛) Right Triangle Trigonometry Cosine: x-value 𝐧 logb(am) = mlogb(a) sin(θ) = Sine: y-value (xm)n = xmn log(x) = log10(x) Change of Base (any non-zero x) Unit Circle Coordinates (Quadrant I) = xm – n 𝐱𝐧 (𝐛) = 𝐛 𝐱 Logarithms Special Right Triangles Based on the Pythagorean Theorem: a2 + b2 = c2 (where a and b are leg lengths and c is hypotenuse length) 𝟏 Point-Slope: y – y1 = m(x – x1) Quadratic Formula Exponent Rules (x ≠ 0) 𝟐 Slope-Intercept: y = mx + b Standard Form Equation for Circles Cubic Factoring 𝐲 −𝐲 m = 𝐱𝟐 −𝐱𝟏 from point (x1,y1) to (x2,y2) Slope Formula 𝐚 𝐜 𝐚 𝐜 )=θ x√𝟑 cos(θ) = 𝐛 𝐜 𝐛 cos-1( Radians 0 x-value 1 y-value 0 𝐜 tan(θ) = )=θ 𝝅 𝟔 √𝟑 𝟐 𝟏 𝟐 √𝟑 𝐚 𝐛 c 𝐚 tan-1( ) = θ 𝐛 𝝅 𝟒 √𝟐 𝟐 √𝟐 𝟐 a θ b 𝝅 𝟑 𝟏 𝟐 √𝟑 𝟐 𝝅 𝟐 0 1 Reciprocals for Sine and Cosine csc x = 𝐬𝐢𝐧 𝐱 𝟏 sec x = 𝐜𝐨𝐬 𝐱 Tangent and Cotangent tan x = 𝐜𝐨𝐬 𝐱 𝐬𝐢𝐧 𝐱 cot x = 𝐬𝐢𝐧 𝐱 Odd Trigonometric Functions Even Trigonometric Functions Pythagorean Trig Identities Co-Function Trig Identities csc(-x) = -csc(x) tan(-x) = -tan(x) cot(-x) = -cot(x) cos(-x) = cos(x) sec(-x) = sec(x) sec2x = 1 + tan2x 𝝅 sec x = csc(𝟐 – x) 𝝅 csc x = sec( 𝟐 – x) sin x = cos( 𝟐 – x) cos x = sin( 𝟐 – x) tan x = cot(𝟐 – x) 𝝅 𝝅 cot x = tan( 𝟐 – x) 𝝅 y = sin-1x: y ∈ [− 𝟐 , 𝟐 ] 𝝅 𝝅 y = cos-1x: y ∈ [𝟎, 𝝅] y = tan-1x: y ∈ (− 𝟐 , 𝟐 ) 𝝅 𝝅 y = cot-1x: y ∈ (𝟎, 𝝅) Axis: k 𝛑 𝛑 𝛑 y = csc-1x: y ∈ [− 𝟐 , 𝟐] , 𝐱 ≠ 𝟎 𝟐 Phase Displacement: h Amplitude: A y = A cos B(x – h) + k (base = b height = h) Triangle Area (base = b height = h) Trapezoid Area (bases: b1,b2, height = h) Prism and Pyramid Volume (area of base = B, height = h) Cylinder and Cone Volume (radius = r, height = h) Cylinder Surface Area (radius = r, height = h) Cone Surface Area (radius = r, slant-height = s) Sphere Volume and Surface Area (radius = r) Scale Factor: Linear, Area, Volume 𝝅 cos(A ± B) = cos A cos B ∓ sin A sin B Parallelogram Area Distance Formula Between Points csc2x = 1 + cot2x sin(A ± B) = sin A cos B ± cos A sin B y = sec-1x: y ∈ [𝟎, 𝛑], 𝐱 ≠ Sinusoid Function 𝐜𝐨𝐬 𝐱 sin(-x) = -sin(x) sin2x + cos2x = 1 Sum/Difference for Sine and Cosine Inverse Trig Principle Branches 𝟏 Period: bh 𝟏 𝐛𝐡 ∙bh or 𝟐 𝟐 𝟏 ∙(b1 + b2)∙h 𝟐 𝟏 Pyramid: ∙Bh 𝟑 𝟏 Cylinder: πr2h Cone: ∙πr2h 𝟑 Prism: Bh 2πr2 + 2πrh πr2 + πrs V= 𝟒 𝟑 πr3 and S.A. = 4πr2 d = √(𝐱 𝟐 − 𝐱 𝟏 )𝟐 + (𝐲𝟐 − 𝐲𝟏 )𝟐 L.S.F. = s then A.S.F = s2 and V.S.F = s3 𝟐𝛑 𝐁
© Copyright 2026 Paperzz