SMcSmythurs,HolymeadPrimarySchool Coun7ng • LOTSofcoun7ng!Whatconceptscouldthisleadto? SMcSmythurs,HolymeadPrimarySchool Ideasforfrac7onsathome Workwith‘stuff’(con7nuousquan77es)moving betweenaunitof‘1’andaunitwhichisn’t1 SMcSmythurs,HolymeadPrimarySchool Frac7onsasnumbers • Onehalfis½0.550% • Onequarteris¼0.2525% • Threequartersis¾0.7575% • Onetenthis1/10or0.1 • Onehundrethis1/100or0.01 SMcSmythurs,HolymeadPrimarySchool Improperfrac7onandmixednumber 7 2 =1 5 5 SMcSmythurs,HolymeadPrimarySchool Equivalence 2 7 x5 x5 10 35 SMcSmythurs,HolymeadPrimarySchool Calcula7ngwithFrac7ons SMcSmythurs,HolymeadPrimarySchool Calcula7ngwithfrac7ons 3 3 + 10 10 8 8 + 10 10 2 3 1 − 10 10 • Readas:3ofthosethingscalledtenths,add3of thosethingscalledtenths=6/10 2 1 + 3 4 SMcSmythurs,HolymeadPrimarySchool Calcula&ngwithFrac&ons • ¾x12(some7meswri_enas3/4of6) • 6÷½(diagram) • ⅓÷2(diagram) • ¼x½=⅛(picture) SMcSmythurs,HolymeadPrimarySchool Frac7onsofquan77es (Frac7onxwholenumber) ¾x12=9 3 3 3 3 • Drawabar,splititintofourparts(i.e. quarters)thencolourthreeofthem SMcSmythurs,HolymeadPrimarySchool Dividingbyfrac7ons (wholenumber÷afrac7on) **Linktodivisione.g.12÷3-Howmany3sin12? 6÷½=12 “Howmanyhalves aretherein6?” SMcSmythurs,HolymeadPrimarySchool Frac7on÷WholeNumber 1/3 ÷2 Drawabar,withthreeparts,thendrawa horizontallinetodivideby2 SMcSmythurs,HolymeadPrimarySchool Mul7plyingfrac7ons ¼x½=1/8 Drawarectanglewithquartersononesideandhalves ontheother.Colourinthequarter,thencrosshatch the½.Thisexplainswhyyouhave1/8visually. ¼ ¼ ¼ ¼ ½ ½ SMcSmythurs,HolymeadPrimarySchool
© Copyright 2025 Paperzz