CEGEP CHAMPLAIN - ST. LAWRENCE 201-NYA-05: Differential Calculus Patrice Camiré Implicit Differentiation 1. Find the derivative of the curve. (a) x5 + y 5 = 2 (c) x − xy 2 + 2y = y − x (b) x3 + x2 y + 4y 2 = 6 (d) x2 y + xy 3 = 3x + π (e) 2y 7 + x3 y 2 = 1 − x2 y (f) √ x + y = x2 y 3 − x 2. Find the derivative of the curve and the equation of the tangent line to the curve at the given point. (a) curve: x2 − 3y 2 = 2x point: (−1, 1) (b) curve: 1 + x3 − xy = y 2 + 5x point: (−2, 3) (c) curve: x3 + x2 y − y 2 = 1 − 3x + x4 point: (1, 2) (d) curve: xy − x3 y 2 + 22 = y 3 − x point: (3, 1) (e) curve: x2 y 3 + 5x − y = 1 − xy point: (4, −1) (f) curve: x2 − x2 y 3 + 1 = 2x5 − y 4 point: (1, 1) (g) curve: y 8 − 2xy 3 + 1 = x4 + y 5 point: (−1, −1) (h) curve: 3x2 − xy + y 6 = x + 2y + 3 point: (0, −1) 3. Find the equation of the tangent line to the curve at the given point. (a) x2 + xy + y 2 = 3 , (1, 1) (b) x2 + 2xy − y 2 + x = 2 , (1, 2) (c) 2(x2 + y 2 )2 = 25(x2 − y 2 ) , (3, 1) (d) y 2 (y 2 − 4) = x2 (x2 − 5) , (0, −2) √ (e) xy + xy = 2 , (1/2, 2) (f) |x| + |y| = 1 , (1/2, −1/2) 4. Find all points on the curve for which the tangent line is (i) horizontal and (ii) vertical. (a) x2 − xy − y 2 = −20 (e) x2 − y 2 − xy + 5x = −10 (b) x2 − xy + y 2 = 75 (f) x2 − y 2 − xy + 5y = 10 (c) x2 + y 2 − xy + 3x = 24 (g) x2 + y 2 − 2x − 2y + 1 = 0 (d) x2 + y 2 − xy + 6y = 36 (h) x2 + y 2 + 2x − 4y + 4 = 0 Answers dy x4 =− 4 dx y (d) (b) dy x (3 x + 2 y) =− dx x2 + 8 y (e) (c) dy −2 + y 2 =− dx −1 + 2 xy 1. (a) 2. (a) x−1 dy = dx 3y dy xy (3 xy + 2) =− dx 14 y 6 + 2 x3 y + x2 √ √ dy −1 + 4 xy 3 x + y − 2 x + y √ (f) =− dx −1 + 6 x2 y 2 x + y (e) 2 1 tangent line: y = − x + 3 3 (b) (c) (d) dy 3x2 − y − 5 = dx x + 2y tangent line: y = x + 5 (f) dy 4x3 − 3x2 − 2xy − 3 = dx x2 − 2y tangent line: y = 2x (g) dy 3x2 y 2 − y − 1 = dx x − 2x3 y − 3y 2 43 25 tangent line: y = − x + 54 18 3. (a) y = −x + 2 7 3 (b) y = x − 2 2 9 40 (c) y = − x + 13 13 4. (a) (i) (2, 4), (−2, −4) (ii) ∅ dy 2 xy + y 3 − 3 =− dx x (x + 3 y 2 ) (h) dy 2xy 3 + y + 5 = dx 1 − x − 3x2 y 2 4 67 tangent line: y = x − 51 51 dy 2x − 2xy 3 − 10x4 = dx 3x2 y 2 − 4y 3 tangent line: y = 10x − 9 4x3 + 2y 3 dy = 7 dx 8y − 5y 4 − 6xy 2 6 1 tangent line: y = x − 7 7 1 + y − 6x dy = 5 dx 6y − x − 2 tangent line: y = −1 (d) y = −2 (e) y = −4x + 4 (f) y = x − 1 (e) (i) (−1, 3), (−3, −1) (ii) ∅ (b) (i) (−5, −10), (5, 10) (ii) (10, 5), (−10, −5) (f) (i) ∅ (ii) (−1, 3), (3, 1) (c) (i) (1, 5), (−5, −7) (ii) (4, 2), (−8, −4) (g) (i) (1, 0), (1, 2) (ii) (2, 1), (0, 1) (d) (i) (2, 4), (−6, −12) (ii) (6, 0), (−10, −8) (h) (i) (−1, 1), (−1, 3) (ii) (0, 2), (−2, 2)
© Copyright 2026 Paperzz