Answer - Assignment Expert

Answer on Question #51811 – Math – Trigonometry
Deduce the identity of :
1βˆ’2sin2A
A sin 2A
B tan 2A
C cos 2A
D cos A
Solution
Method 1
This method uses ideas of Trigonometry.
Recall formulas
cos 2 𝐴 + sin2 𝐴 = 1
and cos(2𝐴) = cos 2 𝐴 βˆ’ sin2 𝐴, which follows from
cos(𝐴 + 𝐡) = cos𝐴 βˆ™ cos𝐡 βˆ’ sin𝐴 βˆ™ sin𝐡.
Then
1 βˆ’ 2sin2 𝐴 = (cos 2 𝐴 + sin2 𝐴) βˆ’ 2sin2 𝐴 =
= cos 2 𝐴 + (sin2 𝐴 βˆ’ 2sin2 𝐴) = cos 2 𝐴 βˆ’ sin2 𝐴 = cos(2𝐴)
Method 2
This method uses ideas of Complex Analysis.
According to Euler's formula sin  ο€½  ei ο€­ eο€­i  / 2 ,
 exp i  ο€­ exp  ο€­i  οƒΆ
 exp  2i  ο€­ 2 exp i  exp  ο€­i   exp  ο€­2i  ο€½
1 ο€­ 2sin  ο€½ 1 ο€­ 2 οƒ— 
οƒ· ο€½ 1ο€­ 2
2i
4i 2

οƒΈ
2
2
ο€½ 1
 exp  2i   exp  ο€­2i  ο€½ cos 2
1
exp  2i  ο€­ 2  exp  ο€­2i  ο€½

2
2
Answer: C cos (2A)
www.AssignmentExpert.com