Answer on Question #51811 β Math β Trigonometry Deduce the identity of : 1β2sin2A A sin 2A B tan 2A C cos 2A D cos A Solution Method 1 This method uses ideas of Trigonometry. Recall formulas cos 2 π΄ + sin2 π΄ = 1 and cos(2π΄) = cos 2 π΄ β sin2 π΄, which follows from cos(π΄ + π΅) = cosπ΄ β cosπ΅ β sinπ΄ β sinπ΅. Then 1 β 2sin2 π΄ = (cos 2 π΄ + sin2 π΄) β 2sin2 π΄ = = cos 2 π΄ + (sin2 π΄ β 2sin2 π΄) = cos 2 π΄ β sin2 π΄ = cos(2π΄) Method 2 This method uses ideas of Complex Analysis. According to Euler's formula sin ο‘ ο½ ο¨ eiο‘ ο eοiο‘ ο© / 2 , ο¦ exp οiο‘ ο ο exp ο οiο‘ ο οΆ ο¨ exp ο 2iο‘ ο ο 2 exp οiο‘ ο exp ο οiο‘ ο ο« exp ο ο2iο‘ οο© ο½ 1 ο 2sin ο‘ ο½ 1 ο 2 ο ο§ ο· ο½ 1ο 2 2i 4i 2 ο¨ οΈ 2 2 ο½ 1ο« ο¨ exp ο 2iο‘ ο ο« exp ο ο2iο‘ οο© ο½ cos 2ο‘ 1 exp ο 2iο‘ ο ο 2 ο« exp ο ο2iο‘ οο© ο½ ο¨ 2 2 Answer: C cos (2A) www.AssignmentExpert.com
© Copyright 2026 Paperzz