Advanced Math Sine Graphs & Transformations Trig Graphs D1 Name: Graph a unit circle (in degrees) and label all the points. Using the axis below, graph one cycle of the sine function. Where does the cycle end? __________ That is called the ______________________________ What is the maximum value for sine? __________ What is the minimum value for sine? __________ Define: amplitude: _________________________________________________________________ _________________________________________________________________ Define: phase shift: ________________________________________________________________ Define: vertical shift: _______________________________________________________________ Define: reflection: __________________________________________________________________ The general form for a sine equation is: Where ________ is the amplitude, which is also a vertical _________________ or ________________ If π is negative there is a ____________________ over the _____________ β is the π is the 1 Example 1: For each function, state the amplitude, if there is a reflection, the phase shift and the vertical shift. Write βnoneβ for transformations that do not exist. 1 1. π¦ = 2 sin π 2. π¦ = Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 4. π¦ = β 2sin π 5. π¦ = β sin π 6. π¦ = sin π β 3 Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 7. π¦ = sin π + 4 8. π¦ = sin π β 2 9. π¦ = sin(π β 90°) Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 10. π¦ = sin(π + 180°) β 2 11. π¦ = 2sin(π + 180°) 12. π¦ = 3sin(π + 90°) Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 2 sin π 1 2 3. π¦ = β sin π 2 Example 2: Graph the functions from Example 1. Step #1: Start by labeling the π-axis in degrees and the π-axis in integer units. Then graph the parent function π = π¬π’π§ π½. Step #2: List the transformations Step #3: Graph each transformation β one at a time 1. π¦ = 2 sin π Transformations: 3. π¦ = β sin π Transformations: 2. π¦= 1 2 sin π Transformations: 4. π¦ = β 2sin π Transformations: 3 5. 1 π¦ = β 2 sin π Transformations: 7. π¦ = sin π + 4 Transformations: 6. π¦ = sin π β 3 Transformations: 8. π¦ = sin π β 2 Transformations: 4 9. π¦ = sin(π β 90°) Transformations: 11. π¦ = 2sin(π + 180°) Transformations: 10. π¦ = sin(π + 180°) β 2 Transformations: 12. π¦ = 3sin(π + 90°) Transformations: 5 Advanced Math Cosine Graphs & Transformations Trig Graphs D2 Name: Graph a unit circle (in degrees) and label all the points. Using the axis below, graph one cycle of the cosine function. Where does the cycle end? __________ That is called the ______________________________ What is the maximum value for cosine? __________ What is the minimum value for cosine? __________ Define: amplitude: _________________________________________________________________ _________________________________________________________________ Define: phase shift: ________________________________________________________________ Define: vertical shift: _______________________________________________________________ Define: reflection: __________________________________________________________________ The general form for a cosine equation is: Where ________ is the amplitude, which is also a vertical _________________ or ________________ If π is negative there is a ____________________ over the _____________ β is the π is the 6 Example 1: For each function, state the amplitude, if there is a reflection, the phase shift and the vertical shift. Write βnoneβ for transformations that do not exist. 1 1. π¦ = 3 cos π 2. π¦ = Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 4. π¦ = β 2cos π 5. π¦ = β cos π 6. π¦ = cos π β 2 Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 7. π¦ = cos π + 3 8. π¦ = cos(π β 180°) 9. π¦ = cos(π + 90°) + 1 Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 10. π¦ = cos(π + 180°) β 2 11. π¦ = 2 cos(π β 90°) 12. π¦ = 3cos(π + 180°) Amplitude:_______ Amplitude:_______ Amplitude:_______ Reflection:_______ Reflection:_______ Reflection:_______ Phase Shift:__________ Phase Shift:__________ Phase Shift:__________ Vertical Shift:__________ Vertical Shift:__________ Vertical Shift:__________ 2 cos π 1 2 3. π¦ = β cos π 7 Example 2: Graph the functions from Example 1. Step #1: Start by labeling the π-axis in degrees and the π-axis in integer units. Then graph the parent function π = ππ¨π¬ π½. Step #2: List the transformations Step #3: Graph each transformation β one at a time 1. π¦ = 3 cos π Transformations: 3. π¦ = β cos π Transformations: 2. π¦= 1 2 cos π Transformations: 4. π¦ = β 2cos π Transformations: 8 5. 1 π¦ = β 2 cos π Transformations: 7. π¦ = cos π + 3 Transformations: 6. π¦ = cos π β 2 Transformations: 8. π¦ = cos(π β 180°) Transformations: 9 9. π¦ = cos(π + 90°) + 1 Transformations: 11. π¦ = 2 cos(π β 90°) Transformations: 10. π¦ = cos(π + 180°) β 2 Transformations: 12. π¦ = 3cos(π + 180°) Transformations: 10
© Copyright 2025 Paperzz