3.3 Piecewise Functions - Flipped Math

3.3 Piecewise Functions
Write your
questions here!
NOTES
Piecewise Functions –
Algebraically
𝑓(βˆ’4) =
2π‘₯ + 8,
π‘₯ ≀ βˆ’2
𝑓(π‘₯) = οΏ½π‘₯ 2 βˆ’ 3, βˆ’ 2 < π‘₯ ≀ 3
π‘₯>3
√π‘₯ + 3,
𝑓(6) =
𝑓(βˆ’2) =
𝑓(0) =
TRY IT!
𝑓(8) =
2π‘₯ 3 βˆ’ 1,
𝑓(π‘₯) = οΏ½3,
|π‘₯ βˆ’ 2|,
𝑓(0) =
π‘₯<1
1≀π‘₯<5
π‘₯β‰₯5
𝑓(4) =
𝑓(5) =
Graphically
𝑓(2) =
𝑓(0) =
𝑓(βˆ’1) =
𝑓(βˆ’1) =
𝑓(βˆ’3) =
𝑓(βˆ’4) =
𝑓(βˆ’4) =
𝑓(3) =
TRY IT!
𝑓(π‘₯) = οΏ½
SUMMARY:
Now,
summarize
your notes
here!
βˆ’2π‘₯ + 1, π‘₯ < 0
2
π‘₯ βˆ’ 3, π‘₯ β‰₯ 0
3
5,
𝑓(π‘₯) = οΏ½
2π‘₯ βˆ’ 4,
π‘₯≀2
π‘₯>2
PRACTICE
3.3 Piecewise Functions
Use the piecewise function to evaluate the following.
1.
π‘Ž. 𝑓(0) =
βˆ’2π‘₯ 2 βˆ’ 1,
𝑓(π‘₯) = οΏ½4
π‘₯ βˆ’ 4,
5
c. 𝑓(2) =
3.
3
,
π‘₯+4
𝑓(π‘₯) = οΏ½ 2
π‘₯ βˆ’ 3π‘₯,
π‘₯ 4 βˆ’ 7,
2.
π‘₯≀2
π‘₯>2
b. 𝑓(5) =
π‘Ž. 𝑓(βˆ’5) =
d. 𝑓(βˆ’3) =
c. 𝑓(0) =
4.
π‘₯ < βˆ’5
βˆ’5<π‘₯ ≀0
π‘₯>0
π‘Ž. 𝑓(βˆ’1) =
b. 𝑓(4) =
π‘Ž. 𝑓(5) =
c. 𝑓(βˆ’10) =
d. 𝑓(0) =
c. 𝑓(βˆ’4) =
5.
π‘₯ 3 βˆ’ 7π‘₯,
π‘₯ ≀ βˆ’3
βˆ’3<π‘₯ ≀3
𝑓(π‘₯) = οΏ½8,
π‘₯>3
√2π‘₯ + 3,
b. 𝑓(11) =
d. 𝑓(3) =
|2π‘₯ + 7|,
π‘₯ ≀ βˆ’4
⎧
2
βŽͺ1 + π‘₯ , βˆ’ 4 < π‘₯ ≀ 1
𝑓(π‘₯) = 6,
1< π‘₯<3
⎨1
βŽͺ π‘₯ + 8,
π‘₯β‰₯3
⎩3
b. 𝑓(1) =
d. 𝑓(2) =
6.
π‘Ž. 𝑓(βˆ’1) =
π‘Ž. 𝑓(βˆ’3) =
b. 𝑓(2) =
b. 𝑓(4) =
c. 𝑓(1) =
c. 𝑓(1) =
d. 𝑓(βˆ’2) =
d. 𝑓(βˆ’1) =
e. 𝑓(0) =
e. 𝑓(0) =
7.
8.
π‘Ž. 𝑓(3) =
π‘Ž. 𝑓(βˆ’4) =
b. 𝑓(βˆ’1) =
b. 𝑓(1) =
c. 𝑓(βˆ’3) =
c. 𝑓(3) =
d. 𝑓(2) =
d. 𝑓(2) =
e. 𝑓(0.5) =
e. 𝑓(1.5) =
Graph the following piecewise functions.
9.
10.
2π‘₯ + 3,
𝑓(π‘₯) = οΏ½1
π‘₯ βˆ’ 1,
2
1
βˆ’
𝑓(π‘₯) = οΏ½ 3 π‘₯ βˆ’ 1, π‘₯ ≀ 3
2,
π‘₯>3
π‘₯≀0
π‘₯>0
11.
12.
4 βˆ’ π‘₯,
𝑓(π‘₯) = οΏ½
2π‘₯ βˆ’ 6,
2
π‘₯≀0
⎧ π‘₯ + 3,
βŽͺ3
0< π‘₯<2
𝑓(π‘₯) = 3,
⎨ 1
βŽͺ βˆ’ π‘₯,
π‘₯β‰₯2
⎩ 2
π‘₯<2
π‘₯β‰₯2
ALGEBRA SKILLZ!
SIMPLIFY
GRAPH
𝑓(π‘₯)
a. 𝑓(βˆ’1) =
b. y-intercept =
c. 𝑓(π‘₯) = 1 when x =
d. x-intercept(s) =
Simplify the radical.
a. √24
b. 4√40
SOLVE
Solve for x.
5
π‘₯
a. 15 = + 4
FACTOR
b. π‘₯ 2 βˆ’ 12π‘₯ + 35
APPLICATION
3.3 Piecewise Functions
1. Use the piecewise function to evaluate the following.
π‘Ž. 𝑓(βˆ’1) =
c. 𝑓(9) =
3
,
π‘₯ < βˆ’3
𝑓(π‘₯) = οΏ½π‘₯ βˆ’2 2
2π‘₯ βˆ’ 3π‘₯, βˆ’ 3 < π‘₯ ≀ 6
8,
π‘₯>6
b. 𝑓(βˆ’4) =
2. Graph the following piecewise function.
1
βˆ’ π‘₯ βˆ’ 2,
𝑓(π‘₯) = οΏ½ 3
1
π‘₯ + 1,
2
π‘₯≀0
π‘₯>0
d. 𝑓(6) =
3. NUMERICALLY Use the piecewise function to fill in the table.
βˆ’π‘₯ + 4,
𝑓(π‘₯) = οΏ½
βˆ’3π‘₯ + 18,
π‘₯≀0
π‘₯>0
x
f(x)
-2
0
1
-12
9
4. GRAPHICALLY Sully’s blood pressure changes throughout the school day. Sketch a graph of his blood
pressure over time. LABEL THE GRAPH! Let x stand for the time since 0800, so 1000 would be x = 2, 1200
would be x = 4, etc…
Sully’s Day
β€’
Sully’s blood pressure starts at 90 and rises 5 points
every hour for the first 4 hours.
β€’
Sully chills out for lunch from 12-1 and maintains a
cool 110 blood pressure.
β€’
Last period of the day hits from 1-3 and Sully’s blood
pressure rises from 110 at 10 points per hour.
β€’
School ends and Sully’s blood pressure starts dropping
2 points per hour until his 8 o’clock bedtime.
5. ALGEBRAICALLY Use the picture of the piecewise function to answer the following.
GRAPH
Equation of the pieces
Domain for the pieces
Piecewise function
𝑓(π‘₯) =
6. VERBALLY Mr. Brust wants to make t-shirts for his Algebra 2 students (shown below). Custom Ink will make
the shirts for the following cost. Write a piecewise function to represent individual cost of a t-shirt as function of
the number of shirts made. Graph it!
Label the graph!
𝑓(π‘₯) =
7. SAT PREP Below are sample SAT questions. The SAT is the main standardized test that colleges look at for
admission. One is multiple choices; the other is free response where you must grid in your answer. Blow it up.
MULITPLE CHOICE
A regulation for riding a certain amusement park ride
requires that a child be between 30 inches and 50 inches
tall. Which of the following inequalities can be used to
determine whether or not the child's height h satisfies the
regulation for this ride?
(A) |β„Ž βˆ’ 10| < 50
(B) |β„Ž βˆ’ 20| < 40
(C) |β„Ž βˆ’ 30| < 20
(D) |β„Ž βˆ’ 40| < 10
(E) |β„Ž βˆ’ 45| < 5
GRID IN
If π‘₯ < 0 < 𝑦, find the value of π‘₯ + 𝑦 given:
2|π‘₯ βˆ’ 9| = 24
|π‘₯𝑦| = 15