Parent Functions

Harold’s
Parent Functions
β€œCheat Sheet”
28 December 2015
For information on other functions (including rational, trigonometric, hyperbolic, and conic sections) visit:
http://tinyurl.com/ParentFunctionsCheatSheet
Function
Name
Parent
Function
Graph
Characteristics
Algebra
Constant
𝑓(π‘₯) = 𝑐
Linear
or
Identity
𝑓(π‘₯) = π‘₯
Quadratic
or
Square
𝑓(π‘₯) = π‘₯ 2
Square Root
𝑓(π‘₯) = √π‘₯
Copyright © 2011-2015 by Harold Toomey, WyzAnt Tutor
Domain: (βˆ’βˆž, ∞)
Range: [c, c]
Inverse Function: Undefined (asymptote)
Restrictions: c is a real number
Odd/Even: Even
General Form:
𝐴𝑦 + 𝐡 = 0
Domain: (βˆ’βˆž, ∞)
Range: (βˆ’βˆž, ∞)
Inverse Function:
𝑔(π‘₯) = π‘₯
Restrictions: m β‰  0
Odd/Even: Odd
General Forms:
𝐴π‘₯ + 𝐡𝑦 + 𝐢 = 0
𝑦 = π‘šπ‘₯ + 𝑏
𝑦 βˆ’ 𝑦0 = π‘š(π‘₯ βˆ’ π‘₯0 )
Domain: (βˆ’βˆž, ∞)
Range: [0, ∞)
Inverse Function:
𝑔(π‘₯) = √π‘₯
Restrictions: None
Odd/Even: Even
General Form:
𝐴π‘₯ 2 + 𝐡𝑦 + 𝐢π‘₯ + 𝐷 = 0
Domain: [0, ∞)
Range: [0, ∞)
Inverse Function:
𝑔(π‘₯) = x 2
Restrictions: π‘₯ β‰₯ 0
Odd/Even: Neither
General Form:
𝑓(π‘₯) = π‘Žβˆšπ‘(π‘₯ βˆ’ β„Ž) + π‘˜
1
Function
Name
Parent
Function
Absolute Value
𝑓(π‘₯) = |π‘₯|
Cubic
𝑓(π‘₯) = π‘₯ 3
Cube Root
𝑓(π‘₯) = √π‘₯
Exponential
𝑓(π‘₯) = 10π‘₯
π‘œπ‘Ÿ
𝑓(π‘₯) = 𝑒 π‘₯
Logarithmic
𝑓(π‘₯) = log π‘₯
π‘œπ‘Ÿ
𝑓(π‘₯) = ln π‘₯
Graph
3
Copyright © 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Characteristics
Domain: (βˆ’βˆž, ∞)
Range: [0, ∞)
Inverse Function:
𝑓(π‘₯) = π‘₯ π‘“π‘œπ‘Ÿ π‘₯ β‰₯ 0
Restrictions:
π‘₯, 𝑖𝑓 π‘₯ β‰₯ 0
𝑓(π‘₯) = {
βˆ’π‘₯, 𝑖𝑓 π‘₯ < 0
Odd/Even: Even
General Form:
𝑓(π‘₯) = π‘Ž|𝑏(π‘₯ βˆ’ β„Ž)| + π‘˜
Domain: (βˆ’βˆž, ∞)
Range: (βˆ’βˆž, ∞)
Inverse Function:
3
𝑔(π‘₯) = √π‘₯
Restrictions: None
Odd/Even: Odd
General Form:
𝑓(π‘₯) = π‘Ž(𝑏(π‘₯ βˆ’ β„Ž))3 + π‘˜
Domain: (βˆ’βˆž, ∞)
Range: (βˆ’βˆž, ∞)
Inverse Function:
𝑔(π‘₯) = π‘₯ 3
Restrictions: None
Odd/Even: Odd
General Form:
3
𝑓(π‘₯) = π‘Ž βˆšπ‘(π‘₯ βˆ’ β„Ž) + π‘˜
Domain: (βˆ’βˆž, ∞)
Range: (0, ∞)
Inverse Function:
𝑔(π‘₯) = log π‘₯
π‘œπ‘Ÿ
𝑔(π‘₯) = ln π‘₯
Restrictions: None, x can be imaginary
Odd/Even: Neither
General Form:
𝑓(π‘₯) = π‘Ž 10(𝑏(π‘₯βˆ’β„Ž)) + π‘˜
Domain: (0, ∞)
Range: (βˆ’βˆž, ∞)
Inverse Function:
𝑔(π‘₯) = 10π‘₯
π‘œπ‘Ÿ
𝑔(π‘₯) = 𝑒 π‘₯
Restrictions: x > 0
Odd/Even: Neither
General Form:
𝑓(π‘₯) = π‘Ž log(𝑏(π‘₯ βˆ’ β„Ž)) + π‘˜
2