Haroldβs
Parent Functions
βCheat Sheetβ
28 December 2015
For information on other functions (including rational, trigonometric, hyperbolic, and conic sections) visit:
http://tinyurl.com/ParentFunctionsCheatSheet
Function
Name
Parent
Function
Graph
Characteristics
Algebra
Constant
π(π₯) = π
Linear
or
Identity
π(π₯) = π₯
Quadratic
or
Square
π(π₯) = π₯ 2
Square Root
π(π₯) = βπ₯
Copyright © 2011-2015 by Harold Toomey, WyzAnt Tutor
Domain: (ββ, β)
Range: [c, c]
Inverse Function: Undefined (asymptote)
Restrictions: c is a real number
Odd/Even: Even
General Form:
π΄π¦ + π΅ = 0
Domain: (ββ, β)
Range: (ββ, β)
Inverse Function:
π(π₯) = π₯
Restrictions: m β 0
Odd/Even: Odd
General Forms:
π΄π₯ + π΅π¦ + πΆ = 0
π¦ = ππ₯ + π
π¦ β π¦0 = π(π₯ β π₯0 )
Domain: (ββ, β)
Range: [0, β)
Inverse Function:
π(π₯) = βπ₯
Restrictions: None
Odd/Even: Even
General Form:
π΄π₯ 2 + π΅π¦ + πΆπ₯ + π· = 0
Domain: [0, β)
Range: [0, β)
Inverse Function:
π(π₯) = x 2
Restrictions: π₯ β₯ 0
Odd/Even: Neither
General Form:
π(π₯) = πβπ(π₯ β β) + π
1
Function
Name
Parent
Function
Absolute Value
π(π₯) = |π₯|
Cubic
π(π₯) = π₯ 3
Cube Root
π(π₯) = βπ₯
Exponential
π(π₯) = 10π₯
ππ
π(π₯) = π π₯
Logarithmic
π(π₯) = log π₯
ππ
π(π₯) = ln π₯
Graph
3
Copyright © 2011-2015 by Harold A. Toomey, WyzAnt Tutor
Characteristics
Domain: (ββ, β)
Range: [0, β)
Inverse Function:
π(π₯) = π₯ πππ π₯ β₯ 0
Restrictions:
π₯, ππ π₯ β₯ 0
π(π₯) = {
βπ₯, ππ π₯ < 0
Odd/Even: Even
General Form:
π(π₯) = π|π(π₯ β β)| + π
Domain: (ββ, β)
Range: (ββ, β)
Inverse Function:
3
π(π₯) = βπ₯
Restrictions: None
Odd/Even: Odd
General Form:
π(π₯) = π(π(π₯ β β))3 + π
Domain: (ββ, β)
Range: (ββ, β)
Inverse Function:
π(π₯) = π₯ 3
Restrictions: None
Odd/Even: Odd
General Form:
3
π(π₯) = π βπ(π₯ β β) + π
Domain: (ββ, β)
Range: (0, β)
Inverse Function:
π(π₯) = log π₯
ππ
π(π₯) = ln π₯
Restrictions: None, x can be imaginary
Odd/Even: Neither
General Form:
π(π₯) = π 10(π(π₯ββ)) + π
Domain: (0, β)
Range: (ββ, β)
Inverse Function:
π(π₯) = 10π₯
ππ
π(π₯) = π π₯
Restrictions: x > 0
Odd/Even: Neither
General Form:
π(π₯) = π log(π(π₯ β β)) + π
2
© Copyright 2026 Paperzz