MATH 155/GRACEY CH. 10 PRACTICE Name___________________________________ SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. At the given point, find the line that is normal to the curve at the given point. 1) y4 + x3 = y2 + 10x, normal at (0, 1) 2) 3x2 y - π cos y = 4π, normal at (1, π) 1) 2) Parametric equations and a parameter interval for the motion of a particle in the xy-plane are given. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. 3) x = 3 cos t, y = 3 sin t, π ≤ t ≤ 2π 3) 5 y 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 4) x = 36t2 , y = 6t, -∞ ≤ t ≤ ∞ 4) y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 1 5) x = 2t + 4, y = 6t + 6, -∞ ≤ t ≤ ∞ 5) y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 6) x = 4 sin t, y = 2 cos t, 0 ≤ t ≤ 2π 5 6) y 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 Find a parametrization for the curve. 7) The ray (half line) with initial point (-1, -9) that passes through the point (4, -16) 8) The upper half of the parabola x + 7 = y2 7) 8) 2 Graph the pair of parametric equations with the aid of a graphing calculator. 9) x = 5(t - sin t), y= 5(1 - cos t), 0 ≤ t ≤ 4π 9) y 12 8 4 10 20 30 40 50 x 60 10) x = 6 cos t + 2 cos 3t, y = 6 sin t - 2 sin3t, 0 ≤ t ≤ 2π 10 10) y 8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 x -2 -4 -6 -8 -10 Plot the point whose polar coordinates are given. 11) (2, -5π/4) 11) 5 -5 5 -5 3 12) (2, π/2) 12) 5 -5 5 -5 13) (-4, 0) 13) 5 -5 5 -5 14) (-2, 2π/3) 14) 5 -5 5 -5 Determine if the given polar coordinates represent the same point. 15) (3, π/4), (-3, π/4) 16) (8, π/2), (-8, 3π/2) 15) 16) 4 17) (3, π/4), (3, 5π/4) 17) 18) (r, θ), (-r, θ + π) 18) 19) (6, π/6), (6, 7π/6) 19) Find the Cartesian coordinates of the given point. 1 20) -4, π 2 20) 21) ( 3, π/6) 21) 22) (-4, -π/3) 22) 23) (-4, π) 23) 24) 14 2 , π 4 24) 25) -5, 5π/3 26) 18, - 25) π 4 26) Replace the polar equation with an equivalent Cartesian equation. 27) r cos θ = 12 28) 3r cos θ + 9r sin θ = 1 29) r = 27) 28) 1 4 cos θ - 5 sin θ 29) 30) r = 8 cot θ csc θ 30) 31) r = -5 csc θ 31) 32) r2 sin 2θ = 22 32) 33) r = 36 sin θ 33) 34) r2 = 20r cos θ 34) 35) r2 = 22r cos θ - 6r sin θ - 9 35) 5 Graph the polar equation. 36) r = 3(2 + 2 sin θ) 36) 10 5 -10 -5 5 r 10 -5 -10 37) r = 2 - cos θ 37) 10 5 -10 -5 5 r 10 -5 -10 38) r = 4 sin 4θ 38) 10 5 -10 -5 5 10 r -5 -10 6 39) r = 4 cos 5θ 39) 10 5 -10 -5 5 10 r -5 -10 40) r = 3(1 -sin θ) 40) 10 5 -10 -5 5 10 r -5 -10 41) r = 2θ 41) 20 10 -20 -10 10 20 r -10 -20 7 42) r = - 1 - sin θ 42) 4 3 2 1 -4 -3 -2 -1 1 2 3 4 r -1 -2 -3 -4 43) r = 2 + cos θ 43) 4 3 2 1 -4 -3 -2 -1 1 2 3 4 r -1 -2 -3 -4 Find the area of the specified region. 44) Inside the cardioid r = α(1 + sin θ), α > 0 44) 45) Inside one leaf of the four-leaved rose r = 7 sin 2θ 45) 46) Inside the limacon r = 8 + 2 sin θ 46) 47) Inside the smaller loop of the limacon r = 5 + 10 sin θ 47) 48) Inside the circle r = 48) 3 sin θ and outside the cardioid r = 1 + cos θ 49) Shared by the circles r = 2 and r = 4 cos θ 49) 50) Shared by the circle r = 5 and the cardioid r = 5(1 + sin θ) 50) 51) Inside the circle r = 6 and to the right of the line r = 3 sec θ 51) 52) Inside the circle r = 8 cos θ + 3 sin θ 52) 53) Inside the outer loop and outside the inner loop of the limacon r = 4 sin θ - 2 53) 8 Graph the parabola. 54) y = 2x2 54) y 10 5 -10 -5 5 10 x -5 -10 55) x = 3y2 55) y 5 -10 -5 5 10 x -5 Find the focus and directrix of the parabola. 1 2 56) x =y 12 56) 57) y2 - 28x = 0 57) 9 MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Choose the equation that matches the graph. 58) 58) y 20 10 -4 -2 2 4 x -10 -20 A) 4x2 = -y B) 4x2 = y C) 4y2 = x D) x2 = 4y SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Graph. 59) 5x2 + 25y2 = 225 59) y 10 5 -10 -5 5 10 x -5 -10 60) x2 + 16y2 = 16 60) y 5 -5 5 x -5 10 Find the vertices and foci of the ellipse. 61) 16x2 + 121y2 = 1936 61) Find the standard-form equation of the ellipse centered at the origin and satisfying the given conditions. 62) An ellipse with length of major axis 14 and y-intercepts (0, ±2) 62) 63) An ellipse with vertices (0, ±9) and foci at (0, ±2 3). 63) Graph. 64) y2 x2 =1 16 49 64) y 10 5 -10 -5 5 10 x -5 -10 65) 16y2 - 4x2 = 64 65) y 10 5 -10 -5 5 10 x -5 -10 Solve the problem. 66) Find the foci and asymptotes of the following hyperbola: x2 y2 =1 64 36 67) Find the vertices and asymptotes of the following hyperbola: y2 x2 =1 100 64 11 66) 67) Find the standard-form equation of the hyperbola centered at the origin which satisfies the given conditions. 68) Vertices at (2, 0) and (-2, 0); foci at (3, 0) and (-3, 0) 68) 69) Vertices at (0, 6) and (0, -6); asymptotes y = 3 3 x and y = - x 5 5 69) Find an equation of the following curve. 70) An ellipse centered at the origin having vertex at (0, -3) and eccentricity equal to 1 3 Graph the parabola or ellipse. Include the directrix that corresponds to the focus at the origin. 20 71) r = 5 + 5 cos θ 70) 71) 6 4 2 -6 -4 -2 2 4 6 -2 -4 -6 72) r = 20 5 + 5 sin θ 72) 6 4 2 -6 -4 -2 2 4 6 -2 -4 -6 12 73) r = 8 2 - cos θ 73) 10 5 -10 -5 5 10 -5 -10 13 Answer Key Testname: M155_E4_PRACTICE 1) y = 2) y = 1 x+1 5 1 1 x+π 2π 2π 3) x2 + y2 = 9 y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 Counterclockwise from (-3, 0) to (3, 0) 4) x = y2 5 y 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x -1 -2 -3 -4 -5 Entire parabola, bottom to top (from fourth quadrant to origin to first quadrant) 14 Answer Key Testname: M155_E4_PRACTICE 5) y = 3x - 6 y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 3 4 5 x 3 4 5 x -1 -2 -3 -4 -5 Entire line, from left to right x2 y2 6) + =1 16 4 y 5 4 3 2 1 -5 -4 -3 -2 -1 1 2 -1 -2 -3 -4 -5 Counterclockwise from (0, 2) to (0, 2), one rotation 7) Answers will vary. Possible answer: x = -1 + 5t, y = -9 - 7t, t ≥ 0 8) Answers will vary. Possible answer: x = t2 + 7, y = t, t ≥ 0 9) y 12 8 4 10 20 30 40 50 60 x 15 Answer Key Testname: M155_E4_PRACTICE 10) 10 y 8 6 4 2 -10 -8 -6 -4 -2 2 4 6 8 10 x -2 -4 -6 -8 -10 11) 5 -5 5 -5 12) 5 -5 5 -5 16 Answer Key Testname: M155_E4_PRACTICE 13) 5 -5 5 -5 14) 5 -5 5 -5 15) 16) 17) 18) 19) 20) No Yes No Yes No (0, -4) 3 3 21) , 2 2 22) (-2, 2 3) 23) (4, 0) 24) (14, 14) -5 5 3 25) , 2 2 (9 2, -9 2) x = 12 3x + 9y = 1 4x - 5y = 1 30) y2 = 8x 31) y = -5 26) 27) 28) 29) 17 Answer Key Testname: M155_E4_PRACTICE 32) y = 11 x 33) x2 + (y - 18)2 = 324 34) (x - 10)2 + y2 = 100 35) (x - 11)2 + (y + 3)2 = 121 36) 10 5 -10 -5 5 10 r 5 10 r -5 -10 37) 10 5 -10 -5 -5 -10 38) 10 5 -10 -5 5 10 r -5 -10 18 Answer Key Testname: M155_E4_PRACTICE 39) 10 5 -10 -5 5 10 r 5 10 r -5 -10 40) 10 5 -10 -5 -5 -10 41) 20 10 -20 -10 10 20 r -10 -20 19 Answer Key Testname: M155_E4_PRACTICE 42) 4 3 2 1 -4 -3 -2 -1 1 2 3 4 r 1 2 3 4 r -1 -2 -3 -4 43) 4 3 2 1 -4 -3 -2 -1 -1 -2 -3 -4 44) 3α2 π 2 45) 49π 8 46) 66π 25 47) (2π - 3 3) 2 48) 3 3 4 49) 2 (4π - 3 3) 3 50) 25 (5π - 8) 4 51) 3(4π - 3 3) 73π 52) 4 53) 4(π + 3 3) 20 Answer Key Testname: M155_E4_PRACTICE 54) y 10 5 -10 -5 5 10 x -5 -10 55) 10 y 5 -10 -5 x 5 -5 -10 56) (0, -3); y = 3 57) (7, 0); x = -7 58) B 59) y 10 5 -10 -5 5 10 x -5 -10 21 Answer Key Testname: M155_E4_PRACTICE 60) y 5 -5 x 5 -5 61) Vertices: (±11, 0); Foci: (± 105, 0) x2 y2 62) + =1 49 4 63) x2 y2 + =1 69 81 64) y 10 5 -10 -5 5 10 x 5 10 x -5 -10 65) y 10 5 -10 -5 -5 -10 66) Foci: (-10, 0), (10, 0); Asymptotes: y = 3 3 x, y = - x 4 4 67) Vertices: (0, 10), (0, -10); Asymptotes: y = ± 5 x 4 22 Answer Key Testname: M155_E4_PRACTICE 68) x2 y2 =1 4 5 69) y2 x2 =1 36 100 70) y2 x2 + =1 9 8 71) 6 4 2 -6 -4 -2 2 4 6 2 4 6 -2 -4 -6 72) 6 4 2 -6 -4 -2 -2 -4 -6 73) 10 5 -10 -5 5 10 -5 -10 23
© Copyright 2026 Paperzz