Journal of Engineering Sciences, Assiut University, Vol. 35, No. 2, pp. 323-335 , March 2007 A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE STRENGTH OF STEEL FIBER REINFORCED CONCRETE Mazen A. Musmar1 and Muhammad I. Rjoub2 Civil Engineering Department, Faculty of Engineering Technology, Al-Balqa' Applied University. Amman 11134, P.O. Box 15008, Jordan 1 Email: [email protected] (Received November 11, 2006 Accepted February 5, 2007) Use of fiber reinforced concrete is increasing recently, brought forth by the enhancements of concrete matrix engineering properties upon adding fiber. The resulting material possesses higher tensile strength, consolidated response and better ductility, which ultimately minimize immature failures. Thus it is beneficial to comprehend more the engineering properties of the material. Accordingly, this study moves toward deriving a mathematical expression that relates fiber reinforced concrete compressive strength to split cylinder tensile strength. Literature survey is carried out to collect data, pertinent to split cylinder tensile strength versus compressive strength values, for fiber reinforced concrete. Gathered data comprise compressive strengths from 20 MPa to 102 MPa. Regression analysis is performed; a mathematical expression that predicts split cylinder tensile strength of steel fiber reinforced concrete is eventually derived. The predicted values fit well with experimental data. The findings of this study shed more light on the tensile strength of fiber reinforced concrete. KEYWORDS: Steel Fiber Reinforced concrete, composite concrete 1- INTRODUCTION The addition of steel fibers to concrete mixes improves the properties of the obtained steel fiber reinforced concrete (SFRC). Symptoms of the improved properties comprise tensile strength, shear strength as well as ductility and toughness of the SFRC. Such enhancements render using steel fibers attractive especially in high strength concrete. The addition of steel fibers also reduces the concrete brittleness, which increases with higher concrete strengths. Such improvements in concrete properties support the use of SFRC in many structural applications such as airports, highway paving layers, industrial floorings, and bridge decks. Let alone its use as a repairing material. 323 Mazen A. Musmar and Muhammad I. Rjoub 324 Utilizing steel fibers as a technique for improving the properties of concrete has been the issue of many studies on structural behavior of such material, steered to acquire better understanding of the behavior of SFRC both in linear and nonlinear stages, and to attain detailed authenticated provisions for the design of such materials. Few studies have been targeted towards investigating the relationship between the split tensile strength and the compressive strength of SFRC. The available relationships are either based on limited number of specimens or narrow range of fiber content or fiber aspect ratio. Ashour et al. [1] suggested the following equation for high strength concrete specimens of a single aspect ratio, l/d of 75 (1) f sp 4.95 2.13 v f where v f is fiber content. More parameters are presented within the expression addressed by Ashour et al. [2], as follows: f sp where f cuf f sp f cuf (20 F ) 0.7 F (2) is the cube strength of fiber reinforced concrete [MPa]. is the splitting strength of fiber reinforced concrete [MPa]. is fiber reinforcement index = (l/d). v f .Df , where l and d are steel fiber length and diameter respectively. Df is a bond factor that equals 0.5 for round fibers, 0.75 for crimped fibers, and 1.0 for indented fibers. In order to derive a credible mathematical relationship, based on a wide range of fiber contents ( v f ), compressive strengths, and fiber aspect ratios (l/d), this study is carried out; it embodies a large number of experimental data collected from literature. The independent predictors comprise specimens of different sizes, various concrete grades and aggregate types in addition to F multiple values of the fiber reinforcement index (v f * l ). d 2- RESEARCH SIGNIFICANCE The importance of the study is that it employs a large number of experimental data of SFRC, based on test specimens that cover a variety of factors of significant effect on the SFRC split strength. The main goal is to present a reliable mathematical expression that relates SFRC split strength with concrete cylindrical compressive strength and fiber reinforcement index. It is hoped that A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE…. 325 such expression could be ultimately employed in formulating appropriate design provisions for fibrous concrete members, under shear, torsion and tension. 3- DATA ANALYSIS An experimental data pertinent to values of compressive strength f ' c , splitting tensile strength, f sp , volumetric fiber content, v f , and fiber aspect ratio, l/ d of 358 SFRC cylindrical specimens are listed in Table (3). These data are gathered from several research papers, (Batson [3], Craig et al. [4], Sharma [5], Robert and Victor [6], El-Niema [7], Ashour et al. [2], Ashour and Wafa [8], Ghosheh [9], Padmarajaiah [10], Marar and Celik [11], Kwak [12], Ayish [13], BaniYasin [14], Rjoub and Rasheed [15], and Aqaileh [16] ). Gathered data contain compressive strength values from 20.65 MPa to 102 MPa. Also data include concrete without fibers and concrete with fiber reinforcement indices. All the compressive strength values presented in Table (3) are either for cylinders of standard dimensions (150x300mm) or converted to standard cylindrical strengths using conversion factors presented in Table (2). Regression analysis is carried out with the split strength, f sp as the predicted dependent variable. The scatter plot of experimental values of f sp versus f ' c indicates that the expected relation could take the general expression l f sp ((v f ) ) d f 'c (3) Parameters that are statistically insignificant are discarded, and the model coefficients are eventually determined. The values of calculated regression coefficients (, and ) are found to be (0.614, 0.4 and 1.029) respectively. Ultimately, the mathematical expression that predicts split cylinder tensile strength of fiber reinforced concrete f sp is concluded as follows l f sp (0.614 0.4 (v f )1.029 ) d f 'c (4) The P-values for the coefficients of regression analysis (, and ) are illustrated in Table (1).Their values are less than 0.001. Such low p-values indicate that the predictor has a significant effect on the response variable. Thus the predictors illustrated in Eq. (4) are statically significant, and have a definite significant effect on the predicted values. Also, the adjusted coefficient of determination, R2 is 0.840, implying that the regression predicted values are acceptably close to the observed data. Mazen A. Musmar and Muhammad I. Rjoub 326 f c' Equation (4) can be normalized by dividing its two sides by the term as follows f sp l (0.614 0.4 (v f )1.029 ) d f 'c (5) Equation (5) could be further simplified as follows f sp f 'c (0.6 0.4 (% FRI )) (6) Where FRI = v f .l/d Figure (1) illustrates the scatter plot of %FRI versus the experimental split strength divided by f c' , for the data listed in Table (3). The plot illustrates an upper and lower bounds derived by regression analysis. Figure (2) also illustrates the experimental split strength values versus the predicted values according to Eq. (7). It indicates that the predicted values are close to test result values. The plot of the data in both figures (Figs. 1 and 2) confirms the reliability of the derived expression. Equation (6) may be written in the following form l f sp (0.6 0.4 (v f ) ) d f 'c (7) Table 1: Estimated parameters using regression analysis P value 0.614 β = 0. 4 = 1.029 < 0.001 < 0.001 < 0.001 R2 = 0.841 adjusted R2 = 0.840 Table 2: Conversion factors to standard cylindrical strength [15] Cylinders 7.5x150 mm 0.95 Cylinders 100x200 mm 0.97 cylinders 150x300 mm 1 Cubes 100x100x100mm 0.78 Cubes 150x150x150mm 0.8 Cubes 200x200x200mm 0.83 A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE…. 327 Table 3: Compressive strength, fiber reinforcement index and split cylinder strength Marar and Celic [11] (Compression, splitting, Cylinders 150x300) no FRI f'c (Mpa) fsp (MPa) no FRI f'c (Mpa) fsp (MPa) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 0 30 60 75 90 105 120 37.5 75 93.75 112.5 131.25 150 41.5 83 103.75 124.5 145.25 166 32.06 32.66 34.11 36.28 37.46 39.27 39.85 33.73 34.63 36.61 38.31 39.63 41.17 33.99 35.26 37.09 39.73 41.27 42.87 3.2 3.93 4.72 5.35 5.9 6.1 6.84 4.12 5.24 6.18 6.53 7.15 7.87 4.36 5.94 6.54 7.07 7.86 8.33 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 0 30 60 75 90 105 120 37.5 75 93.75 112.5 131.25 150 41.5 83 103.75 124.5 145.25 166 73.5 76.02 78.48 80.09 84.63 86.22 88.97 76.96 78.85 84.48 87.4 89.52 91.49 78.02 80.95 86.21 89.19 91.73 93.56 5.13 5.68 6.95 8.26 8.93 9.97 10.83 6.94 8.14 9.12 10.03 11.16 11.74 7.51 8.89 10.71 11.5 12.54 13.16 Craig et al [4] no FRI f'c (Mpa) fsp (MPa) no FRI f'c (Mpa) fsp (MPa) 39 40 41 42 0.00 42.00 100.00 90.00 40.69 40.00 43.45 35.86 3.45 5.72 6.34 5.31 43 44 45 46 120.00 200.00 120.00 160.00 28.97 47.59 40.00 45.52 4.55 6.00 6.07 7.10 no FRI f'c (Mpa) fsp (MPa) 51 52 53 72 67.5 67.5 48.6 47.7 43.2 7.16 6.96 6.62 Sharma [5] no FRI f'c (Mpa) 47 48 49 50 0 0 0 0 42.3 43.2 47.7 46.8 fsp (MPa) 4.55 4.6 4.83 4.79 Mazen A. Musmar and Muhammad I. Rjoub 328 Batson [3] no FRI 54 55 56 57 58 59 60 61 62 44 44 44 44 30.8 30.8 30.8 30.8 61.6 f'c (Mpa) 40.19 40.19 40.19 40.19 40.19 40.19 40.19 40.19 39.71 fsp (MPa) 5.71 5.71 5.71 5.71 5.71 5.71 5.71 5.71 6.18 no FRI f'c (Mpa) fsp (MPa) 63 64 65 66 67 68 69 70 61.6 61.6 61.6 61.6 61.6 61.6 61.6 61.6 39.71 39.71 39.71 39.71 39.71 39.71 39.71 39.71 6.18 6.18 6.18 6.18 6.18 6.18 6.18 6.18 no FRI f'c (Mpa) fsp (Mpa) 78 79 80 81 82 83 75 56.25 93.75 37.5 75 0 42.67 40.47 40.85 40.47 40.11 41.42 5.69 6.62 6.11 7.17 5.51 6.7 FRI 0.00 0.00 0.00 0.00 0.00 0.00 30.00 30.00 30.00 60.00 60.00 60.00 75.00 75.00 75.00 f'c (Mpa) 51.90 49.64 52.13 53.80 52.94 52.89 54.25 55.54 54.72 55.72 55.85 56.80 55.26 55.88 55.58 fsp (Mpa) 5.66 5.23 5.64 5.73 5.86 5.94 6.44 6.12 6.13 7.42 7.28 7.29 7.65 7.55 7.48 Ghosheh [9] no FRI f'c (Mpa) fsp (MPa) 71 72 73 74 75 76 77 0 0 0 26.6 35 70 37.5 42.49 41.9 41.9 42.49 39.7 41.42 40.11 4.56 4.53 4.53 5.4 5.49 6.7 5.24 Bani-Yasin [14] no 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 FRI 0.00 0.00 0.00 0.00 0.00 0.00 30.00 30.00 30.00 60.00 60.00 60.00 75.00 75.00 75.00 f'c (Mpa) 23.83 23.57 23.27 24.20 23.75 23.82 25.83 24.66 24.90 27.39 26.41 25.99 26.68 25.63 26.19 fsp (Mpa) 2.62 2.49 2.54 2.49 2.46 2.51 2.86 3.02 2.97 3.44 3.15 3.01 3.88 3.64 3.58 no 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE…. 329 Ayish[13] no FRI f'c (Mpa) fsp (Mpa) no FRI f'c (Mpa) fsp (Mpa) 114 115 116 117 118 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 0 30 60 60 0 60 0 30 60 60 0 60 30 30 30 60 60 60 30 30 30 20.1 21.37 22.753 22.91 20.65 22.15 32.76 34.48 35.72 36.43 32.60 35.96 21.73 22.07 21.55 22.33 22.08 22.16 22.72 22.32 22.25 3.1 3.23 3.67 3.53 3.14 4.08 3.84 4.15 4.66 4.36 3.74 4.64 2.48 2.31 2.47 2.49 2.46 2.51 2.6 2.66 2.54 119 120 121 122 123 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 60 60 60 90 90 90 30 30 30 60 60 60 30 30 30 60 60 60 90 90 90 22.78 24.65 23.02 24.65 25.45 24.73 53.52 52.03 53.66 51.74 52.74 53.35 54.52 53.66 54.29 54.85 56.68 54.14 56.64 56.03 56.72 2.94 2.76 2.79 3.58 3.63 3.68 5.96 6.08 5.91 5.73 5.86 5.94 6.26 6.57 6.45 6.89 7.3 7.13 8.56 8.34 8.63 Kwak [12] no FRI f'c (Mpa) fsp (Mpa) no FRI f'c (Mpa) fsp (Mpa) 156 157 0.00 31.25 60.72 61.89 4.32 5.88 158 159 46.88 31.25 66.54 29.88 6.08 3.83 Craig [4] no FRI f'c (Mpa) fsp (Mpa) no FRI f'c (Mpa) fsp (Mpa) 160 161 162 163 0 42 100 90 40.69 40.00 43.45 35.86 3.45 5.72 6.34 5.31 164 165 166 167 120 200 120 160 28.97 47.59 40.00 45.52 4.55 6.00 6.07 7.10 El-Neima [7] (Comp, splitting, cylinders 150x300mm) no 168 169 FRI 0.00 51.08 f'c (Mpa) 22.34 26.19 fsp (Mpa) 1.96 4.50 no 186 187 FRI 25.00 25.00 f'c (Mpa) 61.70 39.90 fsp (Mpa) 6.39 5.14 Mazen A. Musmar and Muhammad I. Rjoub 330 (cont) El-Neima [7] no FRI f'c (Mpa) fsp (MPa) no FRI f'c (Mpa) fsp (MPa) 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 89.39 127.70 38.30 67.03 95.75 25.35 44.37 63.38 25.00 25.00 66.50 133.00 50.00 100.00 150.00 200.00 28.57 29.73 24.62 25.24 25.38 23.79 24.76 25.17 61.70 39.90 61.70 67.20 59.30 60.00 67.00 55.90 4.60 4.74 3.60 3.88 4.07 3.12 3.64 4.01 6.39 5.14 7.88 10.70 7.14 8.95 11.32 12.04 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 66.50 133.00 25.00 25.00 66.50 150.00 200.00 250.00 300.00 66.50 100.00 66.50 66.50 133.00 150.00 61.70 67.20 61.70 39.20 61.70 76.70 79.50 77.20 75.80 42.30 41.40 55.70 42.30 71.90 67.00 7.88 10.70 6.39 5.09 7.88 12.11 14.36 16.14 17.98 6.52 7.43 7.48 6.52 11.07 11.32 Robert [6] no FRI f'c (Mpa) fsp (MPa) no FRI f'c (Mpa) fsp (MPa) 203 204 205 0.00 14.25 28.50 54.15 55.96 59.47 2.90 5.60 6.00 206 207 208 42.75 57.00 57.00 56.72 54.15 51.40 5.90 5.60 6.20 Rjoub and Rasheed [15] no FRI f'c (Mpa) fsp (MPa) no FRI f'c (Mpa) fsp (MPa) 209 210 211 212 213 214 215 216 217 218 219 220 0 0 0 0 0 40 40 40 40 40 60 60 55.22 63.71 71.06 80.87 91.85 59.76 65.65 74.69 84.84 94.78 62.51 76.71 4.96 5.11 5.71 6.34 6.62 5.18 5.26 5.91 6.74 6.77 7.13 7.8 284 285 286 287 288 289 290 291 292 293 294 295 0 0 0 0 0 40 40 40 40 40 60 60 59.76 65.65 74.69 84.84 94.78 63.07 78.66 88.3 93.94 97.06 65.21 80.42 5.18 5.26 5.91 6.74 6.77 6.1 6.79 7.36 8.81 8.95 7.32 7.95 A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE…. 331 (cont) Rjoub and Rasheed [15] no FRI f'c (Mpa) fsp (MPa) no FRI f'c (Mpa) fsp (MPa) 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 60 60 60 80 80 80 80 80 120 120 120 120 120 0 0 0 0 0 40 40 40 40 40 60 60 60 60 60 80 80 80 80 80 120 120 120 120 120 0 0 85.62 92.98 97.03 64.73 78.91 88.01 94.67 99.21 66.81 80.82 91 96.73 100.18 65.25 70.21 79.51 89.27 98.92 66.23 79.42 90.79 94.13 99.94 67.37 82.66 91.89 95.62 99.98 69.71 84.31 93.76 96.2 100.12 71.23 85.21 94.78 98.71 101.3 48.74 58.81 8.62 9.64 9.83 8.12 8.93 9.69 10.96 11.47 9.22 9.98 10.73 11.68 12.27 5.28 5.47 6.12 6.58 6.93 6.32 6.97 7.92 8.92 9.02 7.8 8.37 9.2 9.95 10.31 8.81 9.42 10.72 11.63 11.92 9.85 10.84 11.93 12.78 13.08 3.8 4.01 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 60 60 60 80 80 80 80 80 120 120 120 120 120 0 0 0 0 0 40 40 40 40 40 60 60 60 60 60 80 80 80 80 80 120 120 120 120 120 0 0 90.17 94.97 98.11 67.31 81.14 92.93 96.62 99.98 69.08 82.29 94.17 96.35 100.2 51.22 60.85 69.39 80.11 86.48 54.71 67.91 79.31 89.76 93.62 55.84 69.42 81.61 90.31 94.28 57.88 73.07 82.60 92.61 95.31 59.12 74.24 84.63 93.11 96.72 57.87 64.08 8.9 9.75 9.92 8.41 9.15 10.04 11.1 11.5 9.71 10.74 11.23 12.04 12.63 3.95 4.1 4.42 4.75 4.98 4.94 5.94 6.28 6.63 6.91 6.41 7.04 7.68 8.2 8.57 7.23 7.92 8.45 9.57 9.92 8.21 9.00 9.64 10.36 10.74 4.08 4.25 Mazen A. Musmar and Muhammad I. Rjoub 332 (cont) Rjoub and Rasheed [15] No FRI f'c (Mpa) fsp (MPa) No FRI f'c (Mpa) fsp (MPa) 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 0 0 0 40 40 40 40 40 60 60 60 60 60 80 80 80 80 80 120 120 120 120 120 67.31 74.92 80.77 52.63 61.27 74.67 82.89 91.07 54.01 62.89 76.63 84.62 92.86 55.22 64.73 78.98 87.03 93.91 56.77 66.82 80.11 88.18 94.22 4.34 4.63 4.81 4.68 4.97 5.51 6.15 6.26 6.05 6.48 7.08 7.91 8.08 6.83 7.44 8.12 8.97 9.2 7.68 7.94 8.72 4.98 10.3 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 0 120 120 120 0 0 0 40 60 60 60 60 60 80 80 80 80 80 120 120 120 120 120 75.31 84.42 93.64 52.63 61.72 74.67 82.89 91.07 54.01 62.89 76.63 84.62 92.82 52.2 64.73 78.98 87.03 93.91 56.77 66.82 80.11 88.18 94.22 4.63 4.82 4.15 4.68 4.97 5.51 6.15 6.26 6.05 6.48 7.08 7.91 8.08 6.83 7.44 8.12 8.97 9.2 7.68 7.94 8.72 4.98 10.33 l d Note: FRI = (v f * ) s 4- CONCLUSIONS The following conclusions can be drawn from this study 1- A suggested expression that predicts the split cylinder tensile strength of steel fiber reinforced concrete is presented. 2- The outcomes of descriptive statistical analysis confirm the credibility of the derived expression. 3- Concrete compressive strength, fiber content and the fiber aspect ratio are the major effectual parameters in specifying the tensile strength of fiber concrete. A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE…. 333 2.5 f sp/(f'c) 0.5 2 Upper boundary 1.5 1 Lower boundary 0.5 Test result values 0 0 0.5 1 1.5 2 2.5 3 3.5 Hundreds Fiber reinforcement Index,% FRI Figure 1: Effect of steel fiber reinforcement index, % FRI versus fsp/(f'c)0.5 18.00 Predicted fsp (MPa) 16.00 14.00 12.00 10.00 8.00 6.00 4.00 2.00 0.00 0.00 5.00 10.00 15.00 20.00 Experimental fsp (MPa) Figure 2: Experimental versus predicted split strength. 334 Mazen A. Musmar and Muhammad I. Rjoub REFERENCES [1] Ashour S. A. , Hasanian G. S. and Wafa, F. F." Flexural Behavior of High Strength Fiber Reinforced Concrete Beams". ACI Structural Journal, V90, No. 3 May-June 1993, pp279-287. [2] Ashour S. A. , Hasanian G. S. and Wafa, F. F."Shear Behavior of HighStrength Fiber Reinforced Concrete Beams", ACI Structural Journal, March-April 1992, V. 89, No. 2, pp 176- 184. [3] Batson, G. Jenkins, E. and Spatney, R. "Steel Fibers as Shear Reinforcement in Beams", ACI Journal, Oct 1972. [4] Craig, R. J. Parr, J. A. Germain, E. Mosquera, V. Kamilares, S. "Fiber Reinforced Beams in Torsion", ACI Journal, Nov-Dec 1986. [5] Sharma, A. K., "Shear Strength of Steel Fiber Reinforced Concrete Beams, ACI Journal V. 83, No. 4, 1986, pp. 624-628. [6] Robert, J. Ward. and Victor C. Li. " Dependence of Flexural Behavior of Fiber Reinforced Mortar on Material Fracture Resistance and Beam Size", ACI Materials Journal, Nov-Dec 1990, V87, No.6, pp627-637. [7] EL-Niema, E. I. " Reinforced Concrete Beams with steel Fibers under Shear", ACI Structural Journal, March-April 1991, V. 88, No. 2, pp 178183. [8] Ashour S. A. , Hasanian G. S. and Wafa, F. F." Flexural Behavior of High Strength Fiber Reinforced Concrete Beams". ACI Structural Journal, V90, No. 3 May-June 1993, pp279-287 [9] Ghosheh, N. "Reinforced Concrete Beams with steel Fibers ", M. Sc. Thesis, Jordan University, 1999. [10] Padmarajaiah, S. K.and Ramaswamy, A. " Crack-Width Prediction for High-Strength Concrete Fully and Partially Prestressed Beam Specimens Containing Stee Fibers", ACI Structural Journal, November-December 2001, V. 98, no.6, pp852-861 [11] Marar K.and Celik, T. "The Influence of FRI on the Relationship Between Compressive and Tensile Strength of NSFRC and HSFRC" The sixth International Conference on Concrete Technology, Amman-Jordan, Oct. 2002. [12] Kwak, Y. K. Eberhard, M. O. Kim, W. S. and Kim, J. "Shear Strength of Steel Fiber-Reinforced Concrete Beams without Stirrups", ACI Structural Journal, July-August 2002, V.99, No. 4, pp530-538. 335 A MATHEMATICAL EXPRESSION FOR SPLIT TENSILE…. [13] Ayish, M. "Punching Shear Behavior of Flat Plates with Fiber Reinforced Concrete", M. Sc. Thesis, June 2004, Jordan University of Sceince and Technology. Bani-Yasin, I. S. "Performance of High Strength Fibrous Concrete slab concrete connections under gravity and lateral loads" M. Sc. thesis, Jordan University of Sceince and technology", June, 2004. ][14 [15] Rjoub, M. I. M., Rasheed, T.M. "Shear Strength of Steel Fiber High Strength Concrete Beams", Seventh International Conference on Concrete Technology, Oct. 2004. [16] Aqaileh, Z. A. "The structural Behavior of High Strength Normal Two Way Ribbed Slabs with Steel fibers", M. Sc. Thesis, Jordan University, 2004. حساب مقاومة شد اانفاق للخرسانة باألياف أص بباستخد بباألخاتخا م ببيةتخ لخلسم بببتاي أ د ببيسبتاا خلم ببلتلد ببال تك بببتخ حسب ب تخ ببي ب تحت ب ب تاد ببا تا دب ب ت أصببي اتخ أ دببيسبتإسببلتاأببيكبتخا مببيةتخ لخلسمبببختحتالا ب تخ أ دببيسبتايا مببيةتخ لخلسمبببتلةيحلبببتأإ ب ت ا جهببيلخ تخ ،ببل تاي أببيكبتا ب تخدبباجيابتحتلايسبببتأكأببمتحتا ب تا د ب تكبببتخ لل ح مبببتتللببيتم ب ل تكبببت خ سهيمببتا ب تدب ح تحتخدباجيابتأكأببمتإسبلتخ اخب ت ابى.م تخ ةبحأختحتإ مببضتأأب تلب تخ أب ح تخ اخب ةت إ ب تخ أصببي اتخ هسلدببمبتت أ دببيسبتايا مببيةتخ لخلسمبببختحتإ مببضتااجببضتإ ب دتخ ل خدبببتا ب تامجببيلتسلببح ت ميأبتم اتإاسبتلةيحلبتخ أ ديسبت ،لتايدباألخاتك باتخاسقبامتالةيحلببتخ أ دبيسبت أبب ختحتاسبي ت إ ت تااتل خدبتاميسي تااأل تلةيحلبتخ أ ديسبت ،لتحتخ ةماتخ لسيظ ةت هيت لةيحلبتخ أ ديسبت أبب خت 2ت حتسلت،ل تخ ل خدبتإ تأ ديسبتاإجهيلت د تل ت26.02تسمحا /لا تتا تت262تسمحا /لا ختحاباتإلبمت 2 ا مببمت ا ص ببي مبتت يكبببتخ اميس ببي تحتا بباتخد بباساي تإاسبببت ميأ ببمبتتااسببيحمتإاس بببتلةيحلبببتخ أ د ببيسبت ،ببلت ايداألخاتك اتخاسقامتالةيحلبتخ أ ديسبت أب ت سقستخ أ ي خ ت ت خ اي ثتخاحم:تخ ل اح تليل تإ بتلدلي :ت مبتخ هسلدبتخ ا سح حجمب\تسداتخ هسلدبتخ للسمب\تجيلخبتخ ا ةي ت خ ا امةمب\تإلي ت\ت2231تاخ ختت22661ت\تخا ل خ اي ببثتخ .ببيسب:تخ ببل اح تل لببلتل ب م تخ جببح :ت مبببتخ هسلدبببتخ ا سح حجمببب\تسدبباتخ هسلدبببتخ للسمببب\تجيلخبببت خ ا ةي تخ ا امةمب\تإلي ت\ت2231تاخ ختت22661ت\تخا ل
© Copyright 2026 Paperzz