Supplement

www.sciencemag.org/content/344/6188/1268/suppl/DC1
Supplementary Materials for
Evidence for mesothermy in dinosaurs
John M. Grady,* Brian J. Enquist, Eva Dettweiler-Robinson, Natalie A. Wright, Felisa A.
Smith
*Corresponding author. E-mail: [email protected]
Published 13 June 2014, Science 344, 1268 (2014)
DOI: 10.1126/science.1253143
This PDF file includes:
Figs. S1 to S15
Tables S1 to S4
References (25–396)
Materials and Methods
I. Mesothermy
Most vertebrates today are classified as either endotherms (‘warm-blooded’) or
ectotherms (‘cold-blooded’). Endothermic mammals and birds rely on internal metabolic
heat to stay warm, whereas ectothermic fish and reptiles rely on external sources, such as
solar energy. Endothermy and ectothermy might simply be regarded as two poles along a
continuum, reflecting differences in the contribution of internal heat to body temperature
(Tb). By this definition, a strict endotherm (100% endothermy) relies solely on internal
heat to set its Tb and a strict ectotherm (0% endothermy) relies solely on external heat
sources. An intermediate organism would use both internal and external sources.
However, this classification belies biological reality. No mammal or bird today relies
entirely, or even mostly, on internal heat. In the absence of environmental heat, at –273
ºC, all endotherms would quickly perish. In tropical environments, in particular, the
contribution of ambient temperature (Ta) to endotherm body temperature far exceeds
50%.
Instead, the relevant conceptual difference between endo- and ectotherms is the degree of
metabolic control over body temperature. Mammals and birds metabolically increase heat
production to maintain a constant body temperature when Ta falls below Tb, leading to
stable Tb values. In addition, endotherms typically possess insulation in the form of fur,
fat or feathers to aid heat conservation. In contrast, reptiles and fish are characterized by
the relative unimportance of metabolic heat in contributing to Tb. Consequently,
ectotherms show a declining Tb and metabolic rate when Ta falls, unless other external
sources of heat are found (e.g., solar basking). Endotherms can relax thermal control –
e.g., hibernation or aestivation to conserve energy – or alter the preferred Tb – for
instance, varying Tb with their circadian rhythm (25). This ‘regulated poikilothermy’ of
many endotherms is consistent with the high degree of metabolic control that
characterizes mammalian and avian thermoregulation.
Today, there is relatively little overlap in the vertebrate world between endothermic and
ectothermic lifestyles. For this reason, the terms ‘endothermy’ and ‘ectothermy’ are
practical, broadly employed designations in vertebrate biology. However, some middle
ground does exist. Marine biologists recognize that certain fish, particularly tuna and
lamnid sharks, can maintain a body temperature up to 10–20 ºC higher than the
surrounding water (16). This is accomplished with elevated metabolic rates and the heatconserving effects of large body size, countercurrent circulation, and the redistribution of
organs. Thus, like endotherms, metabolic heat is used to maintain high body temperatures
(Tb > Ta). For this reason, these species are often described as ‘warm-blooded’ or
‘endothermic’. Similarly, some large sea turtles, such as the leatherback sea turtle,
possess elevated body temperatures, relying on their large bulk to conserve metabolic
heat (22). However, these species differ in important ways from endothermic mammals
and birds. First, they are born ectothermic and match ambient water temperatures
throughout early ontogeny (26), presumably reflecting the high surface area/volume ratio
of small juveniles that leads to rapid heat loss. Second, they are capable of being active at
a range of body temperatures, especially low temperatures, unlike hibernating mammals
and birds. Third, and most importantly, there is little evidence that tuna, lamnid sharks or
sea turtles increase their metabolic rate as Tb falls. For instance, diving to lower, colder
depths generally leads to a corresponding decline in Ta and metabolic rate, even as Tb
remains above Ta (16). The failure to metabolically defend a core body temperature leads
to externally imposed thermal lability – in stark contrast to most mammals and birds.
Some mammals have low and variable body temperatures as well, particularly among
tropical myrmecophagous species. A well-documented case is that of the echidna.
Echidnas are egg-laying, insectivorous monotremes distributed across Australasia. They
possess a very low body temperature (~31 ºC), and differ from their other monotreme
relative, the platypus, by showing much weaker regulation of Tb. Echidna Tb has been
documented to range over 10 ºC in the course of a day (24, 27). This variation is not due
to torpor or circadian rhythms but rather, reflects ambient temperature and activity level.
Unlike tuna and lamnid sharks, echidnas do maintain a thermal set point, but their
internal regulation of Tb is weak, leading to significant thermal lability. Notably, echidnas
have very low metabolic rates, ~¼ that of a placental mammal (27), and this likely limits
their capacity to thermoregulate.
Although the species described here originate from different branches of the evolutionary
tree, they all share similar thermoregulatory features. Mesothermy can therefore be
defined by the following criteria:
1. Tb > Ta via metabolic heat production, when Ta is below the preferred range.
2. A constant Tb is not metabolically defended while active, as in the case of tuna, or
only weakly defended, as observed in the echidna. This may lead to daily or seasonal
thermal lability, particularly in small-bodied forms.
For tuna, lamnid sharks, and leatherback turtles, it is clear that mesothermy is not simply
an arbitrary convergence zone between endotherms and ectotherms. Their inability to
metabolically defend a thermal set point qualitatively differentiates mesotherms from
endotherms, while their reliance on metabolic heat to elevate Tb differentiates them from
ectotherms. Echidnas can be regarded as near the intersection of mesothermy and
endothermy, as they demonstrate a modest metabolic defense of a thermal set point, like
endotherms, but also show externally driven Tb lability and low rates of heat generation,
like mesotherms. We group them with mesotherms here to reflect their unusual thermal
lability (27), which is likely related to their low metabolic rate. In addition, like other
mesotherms – and in contrast to other mammals and birds – echidnas have a remarkable
ability to be active several degrees below their preferred body temperature. They
represent a useful model when considering dinosaur thermoregulation, particularly
feathered species.
Large body size plays an important role among mesotherms in limiting heat loss, because
greater bulk leads to lower surface area/volume. It is no coincidence that the greatest Tb –
Ta differentials occur in larger mesotherms, such as bluefin tuna. As all animals produce
metabolic heat, it is likely that at a sufficiently large size, ectotherms will grade into
mesotherms. Nonetheless, extant mesotherms are not equivalent to inertial homeotherms,
i.e., ectothermic organisms whose large size dampens Tb fluctuation. Large crocodiles,
for instance, rely on basking rather than metabolic heat to increase their body
temperatures (23). This is true for large lizards as well, such as the Komodo dragon,
which occupies open, sunny habitats (28, 29). These inertial homeotherms are still
ectothermic, as external sources of heat are important in elevating Tb. It also bears noting
that many large sharks are typical ectotherms as well, despite their bulk (30, 31). Unlike
mesotherms, these large ectotherms show lower rates of heat generation and
conservation.
We are hopeful introduction of the term ‘mesothermy’ will serve three functions: 1.
Highlight important similarities and differences between animals like tuna, leatherback
sea turtles, echidnas and endo/ectotherms, 2. Clarify the relationship between energy use
and thermoregulation, particularly at the intersection of endo/ectothermy, and 3.
Stimulate a closer examination of living mesotherms and their relevance to paleobiology.
II. Methods Summary
Data on growth and metabolic rates were compiled from the literature, and graphical data
plots were digitized using GraphClick 3.0 (32). To reduce uncertainty, data for dinosaur
growth were taken from published reports that provided a minimum of five
measurements of size and age. Following Peters (11), metabolic rates were converted to
watts from ml O2 s-1 or mg O2 s-1 by multiplying by 20.1 and 14.1, respectively. Where
multiple metabolic rates for a species were reported, the geometric mean was determined.
In instances where only length units were reported, equations relating length to mass
were employed to estimate growth rates. For crocodilians, the formula total length (TL)
equals twice the snout-vent length (SVL) was used to facilitate conversions (33). Growth
and metabolic rates are reported in table S1, and length-mass equations and references in
table S3. All reported growth rates are standardized to modern temporal units (1 day =
86,400 seconds). Statistical calculations were performed in R 3.1.0 (34) and JMP 9.0.1
(35).
The MST ontogenetic growth model defines growth rate as a function of resting
metabolic rate (15), which is similar to basal or standard metabolic rate but includes the
costs of digestion. An accurate, average resting metabolic rate would integrate changes in
metabolic rate from digestion over time, but this is difficult and little data is available.
Resting metabolic rate is quite close to basal metabolic rate in mammals (~20% increase)
(15), and these terms are often used interchangeably. Therefore, we do not distinguish the
two, but note that virtually all data used here are based on measurements of basal
metabolic rate of endotherms, or standard metabolic rate in ectotherms, as measured by
oxygen consumption during postabsorptive condition at rest. For a few large whales –
Physeter catodon, Balaenoptera musculus, and B. physalus – basal metabolic rates were
estimated from lung capacity (36). As standard metabolic rates for ectotherms are
recorded at a variety of temperatures, affecting the metabolic rate, we standardized rates
by employing a Boltzmann-Arrhenius correction factor (6) to facilitate comparison. Here,
metabolic rate B for an organism of mass m and temperature T0 (in kelvins) can be
adjusted to another temperature T:
BT = BT0e -E/k(1/T–1/T0)
⋅
where E is the ‘activation energy’ at ~0.65 eV, and k is Boltzmann’s constant (8.62E-5
eV K-1). This formulation is statistically similarly to a Q10 adjustment of 2.5, but is
preferred here for its generality and underpinnings in statistical thermodynamics (6, 37).
While more precise measures may be used by empirically determining taxon-specific
temperature shifts, the difference between the two adjustments is relatively small in
vertebrates (≤10%) (38). Resting metabolic rates of tropical ectotherms were adjusted to
27 ºC, but other temperatures are considered as well (see figs. S2, S7).
Ontogenetic growth data were fit using three common nonlinear models: the von
Bertalanffy, logistic, and Gompertz. These models generate estimates of final asymptotic
mass and an instantaneous growth coefficient, permitting calculation of maximum growth
rate. We calculated growth parameters using the minpack.lm package (39) in R (34),
which uses a Levenberg-Marquardt least squares criterion. Akaike Information Criterion
(AIC) was used to assess model fit, using the qpcR package (40) in R. The Gompertz
model was consistently low for all AICc metrics (table S4); therefore, growth rates
presented here are derived from the Gompertz model unless otherwise noted. Where
growth rates from multiple populations or sexes were reported, growth curves were fit
separately, and the geometric mean of final mass M and Gmax were reported.
To ensure that our results were not driven by phylogenetic inertia, we performed linear
regressions of phylogenetic independent contrasts of body mass by maximum growth rate
for each major taxon using the package ape in R (41). We obtained phylogenetic trees
from the literature for the following clades: mammals (42), birds (43), squamates (44),
teleost fishes (45), and sharks (46). Some trees were missing taxa included in our study.
In these cases, we patched taxa into the tree following the methods of Sibly et al. (2012)
(47). Phylogenetic trees for squamates, teleost fish and sharks were not ultrametric; in
these cases we forced them to become ultrametric using the chromos function in ape with
lambda set to 0.1. Varying lambda settings did not significantly alter the results of
phylogenetic independent contrasts analyses. Because phylogenetic trees that included all
of our study taxa were not available in the literature for dinosaurs and crocodiles, we built
our own by constructing trees for dinosaurs and crocodiles using recent cladistics studies
(48-54) with unscaled branch lengths (fig. S15).
We used these trees to calculate phylogenetic independent contrasts (PICs) of body mass
and maximum growth rates for each taxon. We performed ordinary OLS and SMA
regression of PICs for maximum growth rate using the R package lmodel2 (26). Linear
regression analyses of these PICs indicate that our results are not driven by phylogenetic
inertia. Slopes for PIC regressions are generally very similar to slopes for nonphylogenetic regressions, almost always falling within the 95% confidence intervals for
non-phylogenetic regression slopes (table S2).
10
A
●
●
●
●
●
102
●
●
●● ●
●
●
●●
●
●
● ●●
●● ●
●
● ● ●
●●
●●
●
●
●
●
● ● ●● ●
●●
●
●
●
●
●●
●
●● ● ●
●
● ●
●
●
●●
●
●● ● ●● ●
●
●●
●
●
●●
●
●
●●
●
●
●
●
● ● ●
● ●
●
●
●
● ● ●
● ●●● ● ● ●
●
●
●
●
●●
●●
●●
●● ● ●
● ●
●
● ●● ● ●
●
● ● ●●●
●
●
● ●●
●
●
●● ●●●
●
● ●
● ●● ●
● ●
●●
● ●
●
100
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●
Placental Mammals
Marsupials
Monotremes
Precocial Birds
Altricial Birds
Crocodilians
Squamata
Sharks
Turtles
Teleost Fish
Polar Fish
Crocodilians
−2
10
100
102
104
106
1/4 -1
Growth Rate
ro (g d ) g1 4d
●
4
100
10
B
10
2
10
3
108
Texas Banded
Gecko
Brown
Water Python
{
Polar
Fish
10
C
Pe
Als
A
Tr
D1
Mc
102
Mr
Pm
Sl
Co
Af
Gl
Tf Dl
Cb
Al
0
Tt
M
As
D2
10
Metabolic Rate (W)
Metabolic Rate (W)
Max.
Rate(g(gd−1
d-1
Max. Growth
growth rate
))
C
Altricial
Birds
Leatherback
Sea Turtle
4
Adult mass
Mass((g)
Adult
g)
104
}
1
104
Tuna
Echidna
Green
Sea Turtle
Masked
Shrew
●
●
●●
●
●●
●
●
Human
Mako Shark
Bottlenose
Dolphin
10 1
Metabolic Rate (W g-3/4) W g
10
3
●
{
Max.
Growth Rate (g d-1)
Max. growth rate (g d−1)
Below we plot some of the main figures with greater taxonomic detail:
10
2
1 4
●
D
●
●
●
● ●●
102
●●
●
●● ●
●
●
●
●
●●
●● ●
● ●
● ●
●
●●●
●
●
●
●
●
●
● ●● ●
●
●●● ●
●
●● ●
●
●
●●
●●
●●●●
●●●● ●
●
●
●
●
● ●
●
● ●
●
● ●
●●●●
●
● ●
●
●
●
●
100
10−2
10−2
100
102
104
106
Adult mass
g)
Adult
Mass ((g)
108
100
102
104
106
108
MassMass
(g) (g)
Adult
Fig. S1. Some of the main plots in greater taxonomic detail. In B, The slope of the standardized major axis
fit (not shown) is 1.16 (CI: 1.00 – 1.34), not significantly different from isometry. In C, the abbreviations
represent the following dinosaur species Al: Archaeopteryx lithographica (basal bird), Pm: Psittacosaurus
mongoliensis, Cb: Coelophysis bauri, Mr: Megapnosaurus rhodesiensis, Sl: Saurornitholestes langstoni, Tf
– Troodon formosus, Dl: Dysalotosaurus lettowvorbecki, Co: Citipati osmolskae, Mc – Massospondylus
carinatus, Tt – Tenontosaurus tilletti, Gl – Gorgosaurus libratus, Als – Albertosaurus sarcophagus, Af –
Allosaurus fragilis, Tr – Tyrannosaurus rex, C – Camarosaurus sp, D1 – Diplodocid sp. 1, D2 –
Diplodocid sp. 2, A – Apatosaurus sp., As – Alamosaurus sanjuanensis, M – Mamenchisaurid sp.
To evaluate the metabolic status of dinosaurs, which lived in warm habitats, it is useful to
compare their growth rates to tropical ectotherms/mesotherms and endotherms. By
Growth Rate (g1/4d-1)
Mass−Independent Growth Rate (g1 4d
plotting G0 against B0 we can compare dinosaurs to extant groups. We have standardized
ectotherms temperatures to an ambient temperature of 27 ºC to facilitate comparison with
dinosaurs, but our results are not qualitatively affected by variation in standardized
temperature between 25 – 30 ºC (fig. S2). The mesothermic echidna was measured at
thermoneutral conditions, which corresponds to an internal temperature of 31 ºC. We did
not attempt to correct this to 27 ºC, as this elevated temperature represents a useful signal
of its metabolic status. Mesothermic fish and reptiles begin their lives as effective
ectotherms, only increasing Tb at larger sizes (26). For this reason, we adjusted the
metabolic rates of small tuna and the mako shark to 27 ºC (see table S2).
100
●
●●●
● ●
●
●
10−1
10−2
●
●●
●
●
●
●●
●●●
●● ●
●●
●
●
●
●
●
●
●●● ●●
●
●
●
●
●
● ● ●
●
● ● ● ●
●
●●
●●●●● ● ●
●
●●●
●
●
●
●
●●
●●
●
● ●
● ● ● ●
●●
●
●
●
● ● ●
●
25 ºC
●
●
10−3
30 ºC
10−4
10−3
10−2
10−1
−1
Mass−Independent Metabolic Rate
-3/4 (W g
Metabolic Rate (W g
)
4
)
Fig. S2. Plotting ectotherm and small mesotherm metabolic rates adjusted to 25 or 30 ºC (dotted lines),
rather than 27 ºC (solid line with 95% confidence band), has little effect on the fit of the data. The
theoretical line is dashed.
III. Predicting Metabolic Rate from Growth
The MST ontogenetic growth model quantifies how growth relates to metabolic rate in an
organism. The MST assumes, and research indicates (55), that scaling of resting
metabolic rate B in relation to mass m over ontogeny generally follows a power function
of the form:
B = B0mα
where α = ¾. Maximum growth rate Gmax can be determined by assessing growth rate at
the point of inflection, at (¾ )4M, or ~⅓M, where M is final (asymptotic) mass. Based on
its energetic formulation (14, 15, 55), this yields:
BM = Em (256/27)Gmax
where Gmax is in units g s–1, BM is metabolic rate in watts (W), at mass M (g), and Em is
the energy required to construct one gram of biomass, calculated at ~6000 J g–1 (55).
More simply, BM = cGmax, where c = Em(256/27). Since Gmax scales as a power function
(Fig. 1b) it can also be written as Gmax = G0Mα. Dividing both sides by Mα removes mass
dependence, yielding:
B0 = cG0
It is convenient to write Gmax in units of g d–1 rather than g s–1. Converting seconds to
days and rounding two decimal places, c = 0.66 W d g–1 (if Gmax is kg yr–1, c becomes
0.24). B at mass m can be predicted by multiplying both sides by mα:
Bm = cG0mα
or Bm ≈ 0.66G0m3/4. The advantage of this formulation, compared to BM = cGmax, is that
metabolic rate can be predicted for any organism at any mass (m), not just at its final
mass (M). Since differences in model estimation of Gmax are relatively small when growth
curves are well characterized, Gmax calculated from other models can be substituted in
this equation with little loss of accuracy.
For empirical comparisons of B and Gmax scaling, it is important that metabolic mass is
standardized with respect to final mass (i.e. metabolic mass = M, or a standard fraction of
M). To make the mass-dependence equivalent, we standardize Gmax to the metabolic mass
mmet, recalculating Gmax as:
Gmax(R) = G0mmet3/4
For many large ectotherms, B is often measured at masses ≪M (see table S2). Therefore,
a standardized comparison of Gmax(R) and B is necessary. We plot B against Gmax(R) for
endotherms, ectotherms, and all species in fig. S3. The fitted line does not differ
significantly from isometry or the theoretical fit for all groups.
●
●
●
●●
●
2
10
●●
0
10
●
●
●
●
●●●
●
●●
●
●
●
●
●●●●
● ● ●
●
●● ●●
●
●
● ● ●●● ●
● ●●
●
●
● ●●●●●
●●
●
●●
● ●
●
●
●
● ● ●● ●
●
●
●●
●
●● ●
●●●
●
●
●
●
●
●
●
y = 0.56x1.03
CI: 0.97–1.10
r2 = 0.90
n = 118
−2
10
10−2
100
102
104
Observed metabolic rate (W)
All
104
Observed metabolic rate (W)
Metabolic
Raterate
(W) (W)
Observed
metabolic
●
●
Endotherms
104
●
102
●
●
●
● ●
●
●
0
●
●
●●
●
●
●
●●
●
●
●
● ●
●
●● ●
●●
●●
● ●● ●
●●
●●
●
●
10
●
●● ●●
●
●
●●
●
●
●
●
●
●
●
●
●
● ● ●
●● ● ●
●
●●
●
● ●●
● ●
●●
●
●
●
y = 0.50x1.05
CI: 0.97–1.13
r2 = 0.88
n = 89
●●
●
●
●
100
102
104
Max. growth rate (g d−1)
Ectotherms
100
10−2
y = 0.72x1.11
CI: 0.97–1.25
r2 = 0.93
n = 22
10−2
100
Corrected Max. growth rate (g d−1)
−1
Corrected
growth
Max.Max.
Growth
Raterate
(g d(-1g) d
●
●
●
)
Fig. S3. Empirical resting metabolic rates are plotted against Gmax(R) for all species, endotherms, and
ectotherms. The dashed line represents the theoretically predicted relationship from MST, the solid line is
the fitted regression with a 95% confidence band. Note the close correspondence to the predicted
relationship, B ≈ 0.66Gmax1.
Metabolic
Raterate
(W) (W)
Observed
metabolic
Among endotherms, metabolic rates are typically measured on adults that have stopped
growing. Therefore, mmet ≈ M, and Gmax can be compared directly to B, relying on no
assumptions of the value of α. Again, the observed scaling does not differ significantly
from isometry, nor the predicted fit (fig. S4).
104
●
Endotherms
●
●
●
●
2
10
●
●
●
●
● ●
●
●
0
10
●
●
●●
●
●
●
●●
●
●
●
● ●
●
●● ●
●
●
●
● ●● ●
●
●●
●●
●
●
100
●
●● ●●
●
●●
●
●
●
●
●
●
●
●
●
● ● ●
●● ● ●
●
●
● ●●
● ●
●●
●
●
●
●●
●●
●
y = 0.48x1.04
CI: 0.96–1.12
r2 = 0.88
n = 89
●
●
102
104
Max. growth rate (g d−1)-1
Max. Growth Rate (g d )
Fig. S4. Observed basal metabolic rates B are plotted against observed Gmax for all endotherms.
These equations provide a useful way to predict dinosaur metabolic rates empirically,
with limited theoretical assumptions. From figs. S3 and S4, an approximate empirical
formula for converting growth (g d–1) to metabolic rate (W) at asymptotic size M can be
determined: BM ≈ 0.6Gmax. To predict rates for juveniles (at mass m), this can be written
as:
Bm ≈ (0.6)G0mα
where α ~ ¾, and G0 is in units of grams and modern days (where 1 day = 86,400 s). For
paleostudies, it may be useful to determine Gmax in units kg yr-1, in which case BM ≈
0.3Gmax, or:
Bm ≈ (0.3)G0mα
If maximum growth rates are unknown, metabolic rates can be predicted from body size
(see Fig. 3b).
Uncertainty in α
If metabolic mass ≈ M, maximum growth rate and metabolic rate can be regressed and
examined for isometry without assumptions of the value of α (e.g., fig. S4). But to
compare or predict metabolic rate from growth rate at any ontogenetic mass, some
assumptions of the proper value of α must be made. In principle, α could vary between
taxa, and our formulation would hold, so long as α for growth rate and metabolic rate
were equivalent within taxa.
We used the value ¾ as a reasonable approximation of a common or average α, due to its
broad use and empirical support in the literature (4, 11, 55, 56), its theoretical arguments
(57, 58), and the relatively small variation observed between vertebrate groups ~(0.65 –
0.85) (59). However, some have found ⅔ to be a better fit for certain taxa (12), or
emphasized the variation between groups (59, 60). If we calculate G0 and B0 assuming α
= ⅔, we observe qualitatively similar patterns. In addition, analysis of growth and
metabolic residuals, which makes no assumptions of α, reproduces the distinct clustering
of ectotherms and endotherms, with mesotherms intermediate (fig. S5). This indicates our
approach is robust to variation and assumptions of a specific value of α.
1/3
-1
Growth
Rate
(g (g1d4d)−1)
Max.
growth
rate
100
A
●
●
●●
● ●
●
●
●
●
●
●●●● ●
●
●●
●●
●
●● ●●
●●
●●
●
●●
●
●●●
●
●
●
●
●●●
●
●
●
●
●●
● ●●●
●● ●●●●●
●
●
● ●●
●
●●
●
● ●
●
●●
●
● ●
●
●
●
●
●
10−1
●
10−2
10−3
α = 2/3
10−3
10−2
10−1
Residual_Gmax
Gmax Residuals
4
Metabolic rate
))
Metabolic
Rate(W
(Wg−1
g-2/3
103
●
B
●
●
●
●
●●
● ●
●
●
●●
●●
●
●
● ●●
●
●
●
●
● ● ●●
●
●
●●
●
● ●● ●
● ● ●●
● ●●
●
● ●
●
● ●● ●
● ●●
●● ●
●● ● ● ●
●
●●
●
●
● ● ●
●●
●
●
●● ●
●
●
●
●
1
10
10−1
●
●
●
●
●
Residuals
10−3
10−3
10−1
101
Residual_MR
Metabolic
Rate Residuals
Fig. S5. Evaluation of α. In A, we plot B0 vs. G0, assuming α = ⅔. The solid line is the fitted regression, the
dashed is the fitted regression based on ¾ scaling. In B, we plot the OLS mass residuals of growth and
metabolic rate.
Generality of Growth Energetics
We also examined the log ratio of (G0/B0) between endo- and ectotherms, a measure of
the metabolic energy allocated to growth. There is no significant difference between the
two (t = 0.46, p = 0.68, df = 110), suggesting thermoregulation does not influence the
allocation pattern, although taxonomic affiliation and lifestyle may be important.
●
●
●
●
●
●
●
●
G0/B0 (g J-1)
G0 B0
10−4
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
10−5
●
●
●
●
●
●
10−6
●
Ectotherm
Endotherm
Endotherm
Fig. S6. The ratio of mass-independent growth rate G0 (g1/4 s–1) and mass-independent metabolic rate B0 (W
g–3/4) is plotted. Although observed variation is higher in endotherms (e.g. fast-growing altricial birds and
slow-growing primates), the means for both thermoregulatory groups are not significantly different (p =
0.68).
Dinosaur Metabolic Rates and Thermoregulation
In Fig. 3b, we compared dinosaur predicted rates to empirical rates in ectotherms,
standardized at 27 ºC. However, it has been argued that dinosaurs may have had higher
body temperatures, simply by virtue of their large bulk (61). If we plot ectotherm
metabolic rates standardized to 35 ºC, they overlap with resting metabolic rates of
dinosaurs. These values are also close to that observed in mesotherms. While inertial
homeothermy likely played role in dinosaurs, their elevated growth rates, higher aerobic
capacity, and ability to survive in seasonally cold habitats indicates that mesothermy was
probably more common than ectothermic homeothermy. Further, smaller dinosaurs grew
significantly faster than similarly sized ectotherms, such as the Komodo dragon.
Metabolic Rate (W)
104
102
100
10
Endotherms
35 ºC
Dinosaurs
Ectotherms
2
25 ºC
100
102
104
106
108
Adult Mass (g)
Fig. S7. Empirical metabolic rates for endotherms and ectotherms are shown, where ectotherms rates are
standardized to 27 ºC (solid line) and 35 ºC (dotted line). The rate of ectotherms at 35 ºC corresponds to
that of dinosaurs.
IV. Comparison to Previous Analyses of Gmax
For comparison, we show previously published estimates of maximum growth rates of
vertebrates. We compare our results with Case (13), whose seminal 1978 work was the
first to examine the scaling maximum growth rates both within and across taxa. However,
his analysis did not distinguish growth in ectotherms at warm or cold ambient
temperatures, grouped all reptilian lineages together, did not include sharks (a potential
analogue to dinosaurs as large active ectotherms), did not include a phylogenetic
correction, and was limited by the paucity of ontogenetic data available at the time. Two
published regression lines of dinosaur growth by Erickson (7, 17) are also depicted for
comparison. Our results show slopes intermediate to Erickson’s, but the individual
growth rates are somewhat lower for most species.
Max. growth rate (g d−1)
Max. Growth Rate (g d-1)
Max. growth rate (g d−1)
104
Comparison with
Case
P.B.
104
Crocodiles
Mar.
Mar.
Squamates
Sharks
A.B.
Altricial
Birds
100
10−2
Dinosaurs
Precocial
Birds
102
P. M.
P. M.
Fish
Reptiles
Fish
2
100 10
104
Comparison
with
EricksonAdult mass
106
Altricial
Birds
P. M.
( g)
Precocial
Birds
102
108
Dinosaurs
Sharks
Crocodiles
Tuna
100
Mar.
Squamates
Erickson 2001
−2
10
Erickson 2009
Fish
100
102
104
106
108
Adult
)
Adultmass
Mass(g(g)
Fig. S8. A. Comparisons with Case (1978) and B. Erickson (2001, 2009). Solid lines, with larger text,
indicate regression lines from this paper; dashed lines and smaller text indicate those by Case and Erickson.
The abbreviations signify: A.B. – Altricial Birds, D. – Dinosaurs, P.B. – Precocial Birds, P.M. – Placental
Mammals, Mar. – Marsupials. Reptiles are only reported by Case, and are located between the solid
squamate and fish lines. The depictions of Case’s regression lines are contracted compared to his
publication, but match the ranges for adult masses in his data.
V. Estimating Maximum Growth Rate
We examined growth rate using the following equations:
Gompertz
von Bertalanffy
Logistic
m(t) = M[exp(–e(–k(t – t0))]
m(t) = M[1 – e(–k(t – t0)]3
m(t) = M/[1 + e(–k(t – t0)]
Gmax = (kM)(1/e)
Gmax = (kM)(4/9)
Gmax = (kM)(1/4)
where m is mass at time t, M is final adult (asymptotic) mass, k is an instantaneous
growth rate constant, and t0 is a correction term for nonzero birth mass (62).
Maximum growth rate is the product of k, M and a model constant. In some instance
where M was poorly resolved or biologically unrealistic, literature references were used
to determine M. This is the case for many dinosaurs, as fitted estimates will often produce
biologically unrealistic values when few non-growing adults are recorded. Where
estimates of M for dinosaurs are provided in the growth literature, these values were used.
Otherwise they were estimated with least squares fitting.
Length and mass are typically related by allometric equations reflecting geometric
similarity (i.e., mass is proportional to length3). Because of this property, at any age prior
to final size, length is a greater fraction of asymptotic length than mass is of asymptotic
mass (see fig. S9). When adult sizes and age were not recorded, estimating asymptotic
size involves extrapolation beyond the observed size range. To limit extrapolation,
whenever length data was provided we determined asymptotic length, and then converted
this value to asymptotic mass. The most frequently used formula for length calculation is
the von Bertalanffy equation (33, 63), where length l at time t is:
l(t) = L(l–e–k(t–t0))
This formula was used to determine asymptotic length L for all species where length
values were provided.
1"
8"
0.8"
6"
0.6"
4"
0.4"
Length"(cm)"
2"
0.2"
Mass"(g)"
0"
Propor%on'of'Szie'
Proportion
of Final Size
Size
Size''
10"
0"
0"
2"
4"
6"
8"
10"
Age'
Age
Fig. S9. Growth of mass and length over ontogeny. Here we depict a hypothetical growth curve of an
organism, where mass(g) = 0.01l(cm)3 (an approximately correct relationship, see (47)). It is born at 0.1
cm, grows to an asymptotic size of 10 g and 10 cm, with a growth rate constant k = 0.3, following the von
Bertalanffy growth curve. On the right axis, relative size (l/L or m/M) is shown. As can be seen, an
organism attains a greater fraction of L compared to M at any given time until asymptotic size is reached.
For instance, at age 4, 73% of asymptotic length is reached, but only 39% of M. Therefore, estimating L
from values of l involves less extrapolation. L is then converted to M to arrive at asymptotic mass.
For one data source, dinosaur limb bone diameters were provided as an estimate of
fractional adult size (2 spp). Empirical calculations of long bone diameter indicates that
diameter scales as mass0.37 (64). On this basis we converted bone diameter proportion to a
mass proportion by raising the diameter proportion to the 2.73 (0.37-1 = 2.73). This was
then multiplied by published values of adult size to calculated mass over ontogeny. This
is comparable to estimation using Developmental Mass Extrapolation (7). Published sizes
of 51.4 kg for Troodon formosus and 79.2 kg Citipati osmolskae were used (65).
Determining Neonate Mass
Mass at birth is the smallest mass along a growth curve and contributes important
biological realism by constraining the curve at the lower end. Thus, we were interested in
determining birth mass when this value was not provided in the original growth paper. In
these cases, we determined birth mass in the following order of priority: First, if mass in
endotherms age 2 days or younger was provided, or age 10 days and younger in
ectotherms (approximately equivalent values, since ectotherms grow ~5-10x slower), no
birth mass was estimated. Second, for species where birth mass was published in other
sources, these values were used. Third, if egg dimensions were available, this was
converted to neonate mass using suitable conversion equations (46). Finally, if none of
these options were available, allometric equations relating adult size to neonate mass
were employed. For dinosaurs, Dolnik (66) provided the following equation:
Egg mass = 0.05(Adult mass)0.46
where mass is in kilograms. Egg mass were multiplied by 0.7 (the value for birds (67)) to
determine neonate mass. Other conversion equations from egg mass to neonate mass can
be found in (67).
For fish, egg size is approximately invariant with adult mass (68). The average egg
diameter in fish is 2.3 mm. Neonate size was assumed to be equal to egg mass, at the
density of water, or 6.4 mg. Crocodilian neonate mass were typically listed in (51).
Otherwise, neonate values were estimated from egg mass in g and adult total length (TL)
in cm, as described in Thorbjarnarson (69):
Egg mass = 0.423TL + 3.709
To standardize adult mass for this calculation, we used the size of the oldest individual in
our dataset for that species.
VI. Sensitivity Analyses
It is important to note that ectotherms and endotherms diverge in growth rates by
approximately an order of magnitude. Thus, methodological biases that introduce errors
as high as 50% will have relatively little impact on our conclusions. Nonetheless, we test
for biases that might alter our results.
To check the robustness of our results, we examined the following questions:
1. Do different growth models produce divergent results?
2. Does the scaling assumption of α = ¾ scaling produce qualitative differences
3.
4.
5.
6.
than α = ⅔?
Does uncertainty in the estimation of asymptotic mass affect our results?
Does uncertainty in the estimation of neonate mass affect our results?
Does inclusion of captive vs. wild animals alter our findings?
Do extinct members of a taxon grow like living members?
Max. growth rate (g d−1)
Max. growth rate (g d
)
Max Growth Rate (g
d-1)
−1
Max. growth rate (g d−1)
1. Do different growth models produce divergent results?
To address question 1 we estimated growth parameters with three different models. We
note that patterns are qualitatively very similar (below). In all cases, dinosaurs are closest
to tuna (black dashed line, center) and are intermediate to extant ectotherms and
endotherms.
104
Gompertz
Gompertz
2
Precocial
Birds
Altricial
Birds
10
Placental
Mammals
Dinosaurs
Sharks
Crocodilians
100
Squamates
10−2
4
10
Fish
100
Logistic
Logistic
102
102
104
106
108
Placental
Adult mass Mammals
(g)
Precocial
Dinosaurs
Sharks
Birds
Altricial
Birds
Crocodilians
100
Squamates
10−2
4
10
Fish
100
102
104
106
Placental
von Bertalanffy
Adult mass (gMammals
)
Von Bertalanffy
2
Altricial
Birds
10
Precocial
Birds
108
Dinosaurs
Sharks
Crocodilians
100
Squamates
10−2
Fish
10
0
102
104
106
108
Adult mass
Adult
Mass(g)(g)
Fig. S10. Sensitivity analysis of growth model choice. The red dashed line is marsupials, the black dashed
line is tuna.
2. Does the scaling assumption of α = ¾ produce qualitative differences from α = ⅔?
10−1
●
10−2
●
●
●
●
10
−3
1010−1−10
10
−2
1010−2
−1
10
−3
1010−3
−2
10
●
●
●
α = 3/4
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
●
−3
α = 2/3
●
1010−1−10
●
●
●
●
●
●
●
●
●
●
●
●
●
M.Met
s
al
pi
All.Euth
slow.Euth
fast.Euth
fast.Euth
la
ce
All.Euth
N.Pre
M.Prot
Pr
im
Al
lP
M
ar
su
hi
dn
a
ird
s
Ec
s
lB
ia
N.Alt
M.Met
M.Prot
nt
To at
al
ot es
s
he , E
d lep
W h
h a
O
th ale nts
er
s ,
Pl
ac
en
ta
ls
M.Prot
N.Pre
oc
ur
Bi
rd
al
ci
tri
Al
Dino
N.Pre
N.Alt
Pr
ec
s
sa
no
ile
ac
Testudines.inter
N.Alt
s
Dino
Dino
Di
tle
Tu
r
od
ro
c
a
Tu
r
k
Se
a
Se
n
Croc
rb
he
Squam
at
Teleostei
Testudines.inter
M.Met
All.Euth
fast.Euth
Le
Selachimorpha
tle
es
at
ua
Sq
G
●
Testudines
C
Squam
Squam
m
sh
Tu
n
k
Fi
ar
st
Te
l
eo
o
Sh
ak
Teleostei.inter
a
Teleostei
Teleostei
re
e
Selachimorpha
Selachimorpha
M
10−3
●
●
●
ks
10
−2
1010−2
−1
10
−3
1010−3
−2
10
●
●
●
sh
10
101000
ar
Mass-Independent
Growth Rate G0
In addition to the analyses shown in fig. S5, we also plot G0 assuming α = ¾, and α = ⅔.
The observed
101000patterns are qualitatively similar.
Fig. S11. Sensitivity analysis of α. We permit variations in α in calculating G0, where G0 = Gmax/Mα and
note that the patterns are qualitatively similar, regardless of the specific value of α. ‘Primates’ refers to
haplorhini primates (e.g., monkeys, apes, tarsiers), which grow markedly slower than strepsirrhini primates
(e.g., lemurs, galagos).
3. Does uncertainty in estimation of asymptotic mass affect our results?
For many animals, growth after asymptotic size is reached is not reported. Where growth
is still continuing, estimation of final size involves extrapolation and uncertainty. Does
this uncertainty influence our results? To address this question, we examined a subset of
data where estimation of asymptotic mass was reasonably certain. We defined this as
occurring when the Gompertz, von Bertalanffy, and logistic model estimates of
asymptotic mass were all within ±10% of the mean asymptotic mass or length. For
species where this criterion was met, we plotted growth regressions (dashed) against the
full data set (solid). In the case of dinosaurs 6 species met this criterion, ranging in size
15 kg to a 25 tons. The reduced data subset was very similar to the full dataset (fig. S12A).
4. Do neonate estimates change our results?
To address this question, we recalculated parameter values with birth mass excluded.
There is no significant difference between regressions calculated from the full dataset
(fig. S12-B).
5. Does inclusion of captive animals alter our findings?
It is reasonable to suppose that captive animals, with a steady food supply and few
dangers, should grow faster than wild animals. As dinosaurs were wild, comparative data
from wild animals is preferred. We prioritized wild animals over captive and excluded
any domesticated animals bred for industrial production (e.g. domestic pigs, cows,
chickens). Of the 375 species examined (+ 6 polar fish), 64% were from wild individuals,
35% captive, and 1% both. Some taxa, such as sharks and crocodilians, only involved
wild individuals.
Because of the taxonomic and ecological relevance of ratites (as large, precocial, and
terrestrial avian dinosaurs) and its low richness, we also examined growth in
domesticated rhea (Rhea Americana) and emu (Dromaius novaehollandiae). These
species are produced in relatively new and small markets, and are unlikely to have
experienced significant selection for faster growth. They did not grow faster than
undomesticated ostriches, and were included in the full dataset.
We plot our full data set (solid lines) against a subset with only wild animals (dashed).
There is no significant difference between the two groups (fig. S12-C).
6. Do extinct members of a taxon grow like living members?
If estimates of growth from extinct animals are reasonably accurate, they might be
expected to grow in a similar fashion to living, ecologically similar relatives. The extinct
taxa analyzed here were comprised of 21 species of Mesozoic dinosaurs, 6 species of
crocodilians and 1 shark species. We plotted the crocodilians and sharks together,
labeling extinct and extant species. Extinct species, although generally larger, grew in a
similar fashion to living members of the taxon (fig. S12-D).
Max. growth rate (g d−1)
A
102
100
All species
Best Growth Only
10−2
100
104
C
102
104
106
Adult mass (g)
102
0
10
All Species
Wild Only
10−2
100
102
104
106
Adult mass (g)
104
108
B
102
100
All Species
Birth Mass Excluded
10−2
100
108
Max. growth rate (g d−1)
Max. growth rate (g d−1)
Max. Growth Rate (g d-1)
Max. growth rate (g d−1)
104
104
D
102
104
108
Adult mass (g)
●
102
●●
●●●
●
●
●
10
Sharks
Extant
Extinct
10−2
Crocodiles
Extant
Extinct
0
106
100
Adult Mass (g)
● ●●
102
104
106
108
Adult mass (g)
Fig. S12. Sensitivity analyses. For A, the sensitivity of asymptotic mass estimates was assessed. We plotted
a subset of our data (n = 270 spp out of 375; dashed) where all three models estimates of M fell within ±
10% of mean M. Solid lines and regression bands are for the full dataset. For dinosaurs, the best fit subset
included Megapnosaurus rhodesiensis, Saurornitholestes langstoni, Coelophysis bauri, Citipati osmolskae,
Tenontosaurus tilletti, and a mamenchisaurid sauropod. In B and C, solid lines represent fits based on our
full dataset, dashed lines show the fit when birth mass or captive species are excluded.
VII. Addressing recent methodological concerns with dinosaur growth
In a recent publication (70), Myhrvold raised a number of issues regarding published
paleontological studies of dinosaur growth curves. Here we discuss briefly on those most
salient to our paper. For brevity, we focus on whether the concerns he has raised impact
our results, and do not examine in detail the underlying biological issues. Before
addressing specific questions, it is important to note that our regression lines for dinosaur
had relatively little scatter (r2 = 0.96), so the removal of any specific species deemed
problematic should have little impact on our results.
1. Myhrvold discusses two general techniques of aging dinosaurs from their bones,
termed the ‘longitudinal method’ and the ‘whole bone method’, and discussed their
relative merits. Similarly, he discussed approaches to estimating dinosaur body mass
from bone dimensions. Two are commonly used – the developmental mass extrapolation
method (71), or DME, and allometric equations determined by Anderson (72). Without
delving into the pros and cons of the various approaches, we simply ask: do these
different methodologies alter our results?
10
A
102
100
Whole bone method
10−2
Longitudinal
100
104
C
102
104
106
108
Adult mass (g)
102
100
DME
Anderson
10−2
100
102
104
106
Adult mass (g)
Max. growth rate (g d−1)
4
Max. growth rate (g d−1)
Max. growth rate (g d
)
Max.−1Growth Rate (g d-1)
Max. growth rate (g d−1)
To answer this question, we plotted regression line of dinosaur growth derived from data
using the respective methods in and compared these to our fit for all data (solid lines,
with 95% confidence band). We classified methods as longitudinal vs. whole bone
method on the basis of Table 1 in Myhrvold’s PLoS ONE paper (70); classification of
DME vs. Anderson was determined from the method description in the original growth
papers. There was no significant difference observed between the fits from the whole
bone or longitudinal method from our fit through all data (fig. S13–A, B). Maximum
growth rates calculated using DME mass calculation were slightly higher than those
derived from Anderson’s equations, perhaps reflecting the higher allometric slope
assumed in DME (3 vs. 2.73). Nonetheless, the results were qualitatively similar the
overall fit (fig. S13–C, D), and do not alter our finding that dinosaurs grew intermediate
to endo- and ectotherms, and most similar to mesotherms, such as tuna (black, thicker
line).
104
B
102
Whole bone method
Longitudinal
0
10
104
104
D
106
Adult mass (g)
102
DME
Anderson
100
108
Adult Mass (g)
104
106
Adult mass (g)
Fig. S13. Comparisons of methodological variation in assessing size and age in dinosaurs. Solid lines, with
95% confidence bands (shaded) represent the regression fit for all data.
2. Myhrvold discussed some issues related to the proper construction of dinosaur growth
curves affecting the calculation of maximum growth rates. He noted that measurement
error associated with aging involves more uncertainty than that associated with bone size.
Consequently, Myhrvold argued growth curves should be constructed with age as the
dependent variable, where error is statistically minimized, and bone dimension as the
independent variable, where no error is assumed.
We have two concerns with this reasoning. First, assessments of bone length rather than
body mass are not particularly relevant to comparative growth and energetic analyses.
Growth occurs via cellular addition in a three-dimensional fashion and should be
accounted for in units of volume or mass, not in length, particularly when body shapes
vary. For instance, a snake may be just as long as an elephant, but it will have over an
order of magnitude lower mass, requiring far less energy to grow to maturity. This makes
comparisons potentially misleading.
More important, from a statistical perspective, is that statistical error is not equivalent
measurement error. Statistical error, which is minimized in least squares regression, is
deviation from a fitted line. Measurement error is only one source of this deviation. In a
review on regression and scaling (73), Warton argued that in scaling analyses, true
biological variation is typically a far larger component of statistical error than
measurement error. In growth studies, biological variation will occur for many reasons,
such as resource availability shifts over ontogeny and the inclusion of multiple
individuals, each with varying genetics and environmental histories.
Instead, we suggest that growth curves should be fit to maximize biological realism and
predictive accuracy, with consideration to how variation occurs in nature. Most growth
curves of wild animals, including paleo studies, are based on measurement of age and
size of multiple individuals in a population. As a result, much of the error is due to
individual differences, reflecting biological variation in genetics and resource
availability. Further, the shape of the growth curve is significant. At adult sizes, growth
levels off, forming a horizontal band of data where size is roughly constant even as age
increases (fig. S14, left column). Ordinary least squares regression will never fit a vertical
line through the center of a vertical band of data, otherwise the residual distances of the
data not intersecting the line would be infinite. If we rotate the axes and set age as the
dependent variable and length as the independent variable, such a vertical band is formed
(fig. S14, center column). To avoid the problem of infinite residuals, asymptotic mass
must always be ≥ any reported mass. However, asymptotic mass should represent the
average final mass in a population. For instance, in a population where adult individuals
are no longer growing, about half the adult mass should above the asymptote, and half
below.
We can assess the quality of regression strategies by applying each to data from living
animals with well-defined curves showing a cessation of growth in adults (fig. S14). In
these species, age is inferred on the basis of observed bone rings (like dinosaurs), while
length is directly measured with comparably lower measurement error (also like
dinosaurs). These would fit the Myhrvold’s criteria for use of age as the dependent
variable. To solve, we simply rearrange the growth equation – in this case the von
Bertalanffy length equation – to determine age rather than length.
Fig E2
Myhrvold Recommendation**
(Age is dependent variable)
Conventional Fit*
(Size is dependent variable)
Myhrvold Recommendation
(Rotated for comparison)
Goldband Snapper
12
A
60
B
40
20
= 52
LL=∞ 52
cmcm
Gmax= =14.5
14.5cm/yr
cm/yr
Gmax
Length (cm)
8
Age (yr)
Length (cm)
60
4
C
40
20
cm
LL∞
==
5353cm
13.7 cm/yr
cm/yr
max==13.7
GG
max
0
0
0
0
4
8
12
0
20
40
Length (cm)
Age (yr)
60
0
4
8
12
Age (yr)
Spinner Dolphin
200
20
200
D
E
F
120
Length (cm)
Age (yr)
Length (cm)
15
160
10
5
LL∞
=175
cmcm
= 175
Gmax
Gmax==89
89cm/yr
cm/yr
80
0
5
10
Age (yr)
15
0
160
120
LL=∞ 230
cmcm
= 230
Gmax
Gmax= =2020cm/yr
cm/yr
80
20
80
120
160
Length (cm)
200
0
5
10
Age (yr)
15
20
Sandbar Shark
G
H
20
200
160
120
Length (cm)
15
Age (yr)
Length (cm)
200
10
5
= 191
LL∞
=191
cmcm
Gmax==52
52cm/yr
cm/yr
Gmax
5
10
Age (yr)
15
160
120
= 537
cm
LL=
cm
∞ 537
61cm/yr
cm/yr
GG
max==61
max
0
80
0
I
80
20
80
120
160
Length (cm)
200
0
5
10
Age (yr)
15
20
Sperm Whale
60
800
1086cm
cm
LL∞
==
1086
= 168cm/yr
cm/yr
max =168
GGmax
K
1200
Length (cm)
J
Age (yr)
Length (cm)
1200
40
20
L
800
= 51,905,852cm
cm
LL=
∞ 51,905,852
20 cm/yr
cm/yr
max==20
GGmax
0
400
400
0
20
40
Age (yr)
60
400
800
Length (cm)
1200
0
20
40
Age (yr)
60
– t0)
* *Length
= L=
– e–-k(Age
∞(1
Length
L(1
e-k(Age) – t0))
****Age
= t=0 –t0(1/k)
• ln{1
– (Length/L
∞)}
Age
– (1/k)
⋅ ln
(1 – Length/L)
Fig. S14. Choice of dependent variable in growth curves. In the first column we use the von Bertalanffy
length equation to plot the conventional fit*, where the dependent variable in the y-axis is size and size
variation is minimized. In the middle column we then plot age as the dependent variable in the y-axis**,
where age variation is minimized, and in the third column we simply rotate the middle column to facilitate
visual comparison with the conventional fit. All growth data are taken from wild animals; maximum
growth rate is calculated as kL∞.
It can be seen that for growth curves with low variation, both formulations give similar
fits (fig. S14, A–C). However, with more variation, treatment of age as the dependent
variable leads to increasingly poor fits by overestimating asymptotic length and
underestimating the maximum growth rate (fig. S14, D-L). The performance is
particularly poor for the sperm whale, which is predicted to reach a final size of over
500,000 meters, but a maximum growth rate of only 20 cm per year (fig. S14, K, L). In
contrast, a realistic final size of 11 meters is readily observed with the conventional
approach, with a maximum growth rate of 170 cm/year (fig. S14, J). For this reason, we
retain the traditional manner of fitting growth curves, where the independent variable is
age, and the dependent variable is size.
3. Myhrvold argues that use of traditional, asymptotic growth curves to fit dinosaurs may
be unfounded, as not all animals are determinate growers, sensu Sebens (74). However,
as noted by Sebens, sigmoidal or concave growth towards an asymptote (i.e., dm/dt → 0)
is effectively universal in noncolonial animals, such as vertebrates, and is generally
observed unless there is early extrinsic mortality. This pattern includes ‘indeterminate’
growers (74), whose growth patterns are sensitive to environmental conditions. This type
of growth is well fit by classical growth curves, such as Gompertz, von Bertalanffy and
logistic curves. Over shorter periods of ontogeny, exponential or linear fits may provide a
good statistical fit, but these can be misleading, suggesting unlimited growth or
impossibly large organisms. Therefore, we do not advocate their use.
Once consideration is limited to biologically realistic models, we agree that is important
to use objective statistical measures for model selection. For this reason we selected the
Gompertz model on the basis of its low AICc scores for dinosaurs and other taxa (table
S4).
4. Myhrvold argues that deficits in available growth data on dinosaurs can lead to
problems with the estimation of growth parameters, such as maximum growth rate and
final adult size. To reduce parameter uncertainty and statistical overfitting we excluded
growth studies with less than 5 data points. This led to the exclusion of some reported
rates criticized for being unrealistic (70, 75). In addition, in our sensitivity analysis (fig.
S12-A) on asymptotic size, only the most complete and best fitting growth curves in
dinosaurs were assessed, and these were compared to the full dataset. They did not differ
significantly from our full dataset.
5. Myhrvold suggested that reported rates of maximum growth rate of Tyrannosaurus, at
769 kg/yr (76), was overestimated. Our calculation, at 472 kg/yr (or 1293 g/d), is based
on raw data reported by Lee and Werning (8), and is quite close to Myhrvold’s
calculation of 467 kg/yr. Myhrvold also suggests that growth data for Allosaurus (8) may
actually represent two distinct species. While this is possible, it will require more
research by taxonomists. Thus, we retain the published designation of a single species.
Note, however, that removal of Allosaurus altogether has almost no affect on the
regression fit (y = 0.00311x0.821 for all spp.; y = 0.00307x0.824 excluding Allosaurus).
VIII. Phylogenetic Trees
For our PIC regression analyses, phylogenetic trees were created from the literature for
extinct dinosaurs and crocodilians, as these taxa lacked published trees for our species.
As published branch lengths are unavailable, all lengths here are unscaled.
Troodon formosus
Crocodylus porosus
Saurornitholestes langstoni
Archaeopteryx lithographica
Crocodylus johnstoni
Citipati osmolskae
Albertosaurus sarcophagus
Crocodylus niloticus
Gorgosaurus libratus
Tyrannosaurus rex
Allosaurus fragilis
Crocodylus affinis
Caiman crocodilus
Coelophysis bauri
Megapnosaurus rhodesiensis
Caiman latirostris
Diplodocid sp.
sp.22
Diplodocid sp.
sp.11
Alligator mississipiensis
sp.
Apatosaurus sp.
Alamosaurus sanjuanensis
Brachychampsa montana
Camarasaurus sp.
sp.
sp.
Mamenchisaurid sp.
Massospondylus carinatus
Deinosuchus sp.
Leidyosuchus canadens
Plateosaurus engelhardti
Psittacosaurus mongoliensis
Pristichampsus vorax
Dysalotosaurus lettowvorbecki
Tenontosaurus tilletti
Borealosuchus sternbergii
Phylogenetic Trees of Dinosaurs & Crocodilians
Fig. S15. Phylogenetic trees for PIC analyses. The left plot represents Mesozoic dinosaurs, the
right extant and extinct crocodilians.
Table S1. A summary of species growth and metabolic rates. Metabolic mass and Ta refers to the mass of the
organism and the ambient temperature at which standard metabolic rate was measured. Growth parameters and
statistics shown here are based on the Gompertz equation. N refers to the number of mass by age values analyzed to
determine maximum growth rate (Gmax), and r2 refers to the statistical fit of the growth curve. If multiple growth
curves per species were analyzed, the average r2 is reported. C refers to Curve, where no data was shown, only a
growth curve, and EQ refers to Equation, where only a growth equation was provided. In the case of C or EQ, no r2
values were calculated. Coldwater fish from polar regions include all species in the genera Hippoglossoides,
Notothenia, and Trematomus (n = 6). Troodon formosus M was fitted by nonlinear regression of mass values, as the
estimate based on length was unrealistically high. *Indicates an extant mesotherm, φ represents extinct species.
Table S1
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Final growth
Mass (g)
Gmax (g d–1)
Alligator mississipiensis
1287
0.6701
25
125900
13.79
Caiman crocodilus
1684
0.1862
25
14820
4.044
Caiman latirostris
28090
3.651
Brachychampsa montana φ
632700
39.88
0.98
25
Deinosuchus sp. φ
4206000
202.6
0.98
103
Leidyosuchus canadens φ
306300
36.67
1
20
Crocodylus 'affinis' φ
1497000
91.48
0.99
18
Crocodylus johnstoni
46380
4.054
Species
r2
n
Crocodylia
C
0.96
16
C
C
Crocodylus niloticus
215.3
0.06421
25
162700
10.06
0.97
53
Crocodylus porosus
389000
38.52
30
237500
21.72
Borealosuchus sternbergii φ
1839000
73.79
1
27
Pristichampsus vorax φ
461900
34.56
1
20
Psittacosaurus mongoliensis φ
22720
13.8
0.97
8
Dysalotosaurus lettowvorbecki φ
148100
18.58
0.97
27
Tenontosaurus tilletti φ
1084000
194.5
0.88
13
Massospondylus carinatus φ
281000
75.95
0.94
10
C
Mesozoic Dinosaurs φ
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
Plateosaurus engelhardti φ
1587000
691
0.99
13
Alamosaurus sanjuanensis φ
32660000
3512
1
10
Apatosaurus sp. φ
19170000
4544
0.99
40
Camarasaurus sp. φ
14250000
4591
0.99
10
Diplodocid sp. 1 φ
4753000
1091
0.99
10
Diplodocid sp. 2 φ
18460000
2174
0.97
17
Mamenchisaurid sp. φ
25080000
4837
0.98
21
Allosaurus fragilis φ
1862000
311.9
0.85
100
Coelophysis bauri φ
33080
11.22
0.98
7
Megapnosaurus rhodesiensis φ
18780
20.29
0.97
7
Albertosaurus sarcophagus φ
1239000
472.2
0.99
6
Archaeopteryx lithographica φ
928
1.6
0.94
9
Citipati osmolskae φ
101700
34.66
0.98
25
Gorgosaurus libratus φ
1733000
225.8
0.97
6
Saurornitholestes langstoni φ
34240
14.12
0.98
10
Troodon formosus φ
52090
16.6
1
19
Tyrannosaurus rex φ
5654000
1293
0.96
9
44010
33.06
0.98
15
108700
20.31
1
43
32390
103.4
0.95
21
13650
60.48
1
28
9977
30.91
Mustela nigripes
911.1
12.82
1
36
Mustela nivalis
70.81
1.222
1
29
Mustela putorius
1169
13.89
1
56
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Placental Mammals
Acinonyx jubatus
38450
61.77
Callorhinus ursinus
Canis lupus
38900
49.02
Caracal caracal
Lynx rufus
9400
23.54
C
Table S1
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Panthera leo
Ta (ºC)
Final growth
Mass (g)
Gmax (g d–1)
r2
n
153800
152
0.98
25
Panthera tigris
137900
133.9
171700
278.9
1
25
Puma concolor
37200
49.33
48970
125.7
0.91
110
176900
82.99
0.78
39
Vulpes lagopus
3346
24.92
0.71
286
Aepyceros melampus
49500
61.29
0.97
25
366100
417.5
0.88
21
Bison bison
445700
546
0.94
21
Bison bonasus
518500
255.7
0.98
27
92550
109.4
0.95
34
Connochaetes gnou
146100
188.8
0.92
78
Eudorcas thomsonii
22670
63.2
Hippopotamus amphibius
1348000
270.2
0.97
39
Hippotragus niger
216100
165.2
0.9
73
214600
169.6
0.98
25
Kobus leche
93400
88.2
0.98
19
Odocoileus hemionus
43220
228.2
0.95
243
77820
86.74
0.91
240
5402
49.78
0.99
49
Ursus arctos
Alces alces
Cervus elaphus
Kobus ellipsipyrmnus
Odocoileus virginianus
325000
67000
1.00E+05
61860
286.8
112.4
148.9
123.4
Pudu puda
C
Rangifer tarandus
85000
119.7
86240
72.19
0.75
130
Sus scrofa
135000
104.2
69350
118.9
0.98
52
Syncerus caffer
569900
382
0.98
18
Balaenoptera acutorostrata
8722000
3139
C
Balaenoptera borealis
17320000
5044
C
Balaenoptera edeni
13520000
3878
104700000
43430
Balaenoptera musculus
1.22E+08
51320
0.9
14
C
Table S1
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Final growth
Mass (g)
Gmax (g d–1)
Balaenoptera physalus
45830000
16530
56350000
22720
Eschrichtius robustus
22930000
6025
Megaptera novaeangliae
33090000
13390
Delphinapterus leucas
1044000
128
0.91
93
86110
33.66
0.7
279
Globicephala melas
1482000
171.3
0.95
83
Monodon monoceros
1214000
140.2
0.89
50
Orcinus orca
5446000
610.9
0.51
112
13110000
4349
0.68
84
Pontoporia blainvillei
25380
18.37
0.85
78
Pseudorca crassidens
1495000
162.9
0.83
124
Sousa chinensis
172400
46.92
0.93
33
Stenella attenuata
61260
35.31
0.8
232
Stenella longirostris
64430
30.63
0.83
356
235100
41.78
0.82
99
16.37
0.161
0.99
16
12.52
0.383
0.77
155
Hipposideros larvatus
14.48
0.475
0.96
56
Hipposideros terasensis
41.78
1.34
0.8
61
Hypsignathus monstrosus
570.4
0.805
0.96
26
Myotis blythii
28.74
0.351
0.42
71
6.34
0.355
0.97
30
8.5
0.413
0.96
91
75.51
1.257
0.96
232
5.17
0.175
0.81
49
8.45
0.196
0.96
69
Delphinus delphis
Physeter catodon
Tursiops truncatus
11380000
157500
4325
328.2
Artibeus watsoni
Eptesicus fuscus
Myotis lucifugus
13.3
5.8
0.113
0.051
Myotis macrodactylus
Phyllostomus hastatus
84.2
0.559
Pipistrellus subflavus
Plecotus auritus
10.25
0.082
Ta (ºC)
r2
n
C
0.71
66
C
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
865
3.629
0.99
6
389.3
3.284
0.77
106
Rhinolophus cornutus
5.2
0.138
0.93
18
Rhinolophus hipposideros
4.47
0.168
0.77
153
Rousettus leschenaulti
36.85
0.341
0.93
103
Tolypeutes matacus
1192
15.93
0.99
24
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Pteropus conspicillatus
Pteropus poliocephalus
598
1.768
Ta (ºC)
Lepus americanus
3004
6.036
1543
16.61
C
Lepus californicus
2300
7.314
1790
13.66
C
4650
51.42
C
Lepus othus
Lepus townsendii
2523
7.698
2933
23.1
0.91
139
Oryctolagus cuniculus
2168
7.395
3944
36.16
1
22
1281
10.76
0.97
129
Sylvilagus floridanus
Cryptotis parva
6.3
0.164
4.21
0.228
0.96
91
Neomys fodiens
16
0.328
16.03
0.453
0.97
65
Sorex cinereus
5.2
0.238
3.79
0.301
0.99
8
Sorex palustris
14.63
0.705
0.98
115
Sorex unguiculatus
9.87
0.574
0.99
41
Suncus murinus
39.7
0.403
66.75
2.094
0.99
137
39
0.292
38.27
0.62
0.98
21
Ceratotherium simum
2130000
1411
0.91
29
Diceros bicornis
1058000
1046
1
39
531000
726.9
0.99
41
Equus quagga
315100
419.2
0.96
18
Rhinoceros unicornis
1750000
1967
0.94
67
1013
1.476
0.61
465
15580
10.39
0.87
116
Macroscelides proboscideus
Equus caballus
Aotus trivirgatus
Ateles geoffroyi
260000
914.5
362.9
2.499
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
Callicebus moloch
1330
1.669
0.86
185
Callimico goeldii
651.1
1.545
0.72
348
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Callithrix jacchus
190
0.848
287.4
0.97
0.99
30
Cebuella pygmaea
110.7
0.599
150.3
0.37
0.74
125
Cebus apella
4759
2.126
0.82
151
Cercopithecus aethiops
2887
2.224
0.99
46
7735
3.301
0.79
199
142600
29.78
0.98
70
63170
10.14
0.96
38
Leontopithecus rosalia
689.5
2.193
0.94
98
Lophocebus albigena
9896
3.891
0.98
56
Macaca fuscata
8266
3.076
0.85
26
10780
4.547
1
170
Macaca nemestrina
10640
5.191
0.77
210
Macaca silenus
8008
2.761
0.75
227
51060
13.85
0.95
136
Papio cynocephalus
19020
8.584
0.91
307
Saguinus imperator
526.6
0.868
0.66
49
697.6
1.333
0.99
24
Tarsius bancanus
118.8
0.567
0.96
40
Eulemur coronatus
1743
2.28
0.75
226
Eulemur macaco
2551
4.848
0.73
358
Eulemur mongoz
1740
2.648
0.69
355
Eulemur rubriventer
2024
5.198
0.92
120
Cercopithecus mitis
8649
19.28
Gorilla gorilla
Homo sapiens
Macaca mulatta
Pan troglodytes
Saimiri sciureus
70000
4900
45000
836.7
82.78
17.01
52.32
4.429
Eulemur rufus
2374
4.239
2201
3.436
0.69
134
Galago senegalensis
171.5
0.764
148.2
1.234
0.99
13
Table S1
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Hapalemur griseus
Ta (ºC)
Final growth
Mass (g)
Gmax (g d–1)
r2
n
993.2
2.003
0.67
230
Loris tardigradus
284
0.714
186.5
0.908
1
11
Microcebus murinus
115
0.594
51.14
1.317
0.94
33
Nycticebus coucang
1129
1.504
1398
7.136
1
14
Otolemur crassicaudatus
993.5
2.595
1130
8.14
1
14
Propithecus diadema
5729
7.817
0.94
35
Propithecus tattersalli
3460
6.18
0.85
44
3572
8.534
0.81
47
3577
5.437
0.77
227
3311000
420.3
0.99
40
3865000
374.4
0.91
205
Acomys cahirinus
35.89
0.761
1
17
Akodon lindberghi
20.8
0.241
Apodemus semotus
29.65
0.498
1
46
Arvicanthis niloticus
61.07
0.803
0.99
24
Ctenomys mendocinus
165.2
2.266
1
13
Dipodomys stephensi
47.91
1.467
0.99
29
15.56
0.499
0.99
8
Funisciurus congicus
104.7
0.923
Gerbillus perpallidus
49.53
0.832
1
34
42.98
0.293
0.98
57
Hoplomys gymnurus
288.4
2.481
1
17
Mastomys coucha
36.66
0.407
0.99
64
42.88
0.503
0.99
50
Microtus cabrerae
35.89
0.797
0.91
209
Neotoma cinerea
287.2
4.012
0.97
40
Propithecus verreauxi
3350
3.738
Varecia variegata
Elephas maximus
3672000
2336
Loxodonta africana
Eligmodontia typus
Heterocephalus glaber
Mastomys natalensis
17.5
35.3
41.5
0.167
0.128
0.183
EQ
C
Table S1
Metabolic
Mass (g)
Metabolic
Rate (W)
96
Paraxerus cepapi
Paraxerus palliatus
Species
Otomys unisulcatus
Peromyscus eremicus
Final growth
Mass (g)
Gmax (g d–1)
0.595
85.56
1.475
15
223.6
0.811
223.8
2.43
C
274.8
1.191
366
2.353
C
21
0.173
24.02
0.376
C
15.86
0.281
C
34
Peromyscus interparietalis
Ta (ºC)
r2
n
Peromyscus leucopus
22.3
0.213
17.53
0.406
Peromyscus maniculatus
20.5
0.219
15.11
0.377
0.98
25
291.2
2.43
1
34
Proechimys semispinosus
Scotinomys teguina
12
0.174
15.23
0.351
0.99
11
Scotinomys xerampelinus
15.2
0.178
15.36
0.277
0.99
10
Spermophilus armatus
313.2
0.915
440.2
7.979
1
18
Spermophilus columbianus
370.6
9.208
0.96
47
Spermophilus elegans
486.4
7.95
0.99
18
325.5
7.562
0.99
15
167.8
2.751
0.99
13
Spermophilus richardsonii
266.3
0.788
Tupaia belangeri
Marsupials
Antechinus flavipes
46.5
0.252
24.62
0.255
0.96
68
Antechinus stuartii
25
0.189
32.64
0.148
0.85
448
2847
5.299
2350
8.82
0.98
26
Bettongia lesueur
1233
8.465
0.99
135
Macropus giganteus
35850
43.05
Macropus parma
3331
11.48
Macropus robustus
30960
28.5
C
C
Didelphis virginiana
C
1
50
Macropus rufus
28500
31.35
44430
22.21
Petaurus breviceps
129.3
0.517
211.8
1.18
0.96
58
178.1
1.697
0.99
47
Petaurus norfolcensis
Table S1
Metabolic
Mass (g)
Metabolic
Rate (W)
Final growth
Mass (g)
Gmax (g d–1)
r2
n
Phascolarctos cinereus
4732
5.744
3211
7.85
0.92
380
Pseudocheirus peregrinus
859.3
2.27
850.9
5.136
0.97
164
Thylogale billardierii
4795
17.39
0.98
94
Trichosurus caninus
2646
4.761
0.96
34
2241
10.16
0.99
33
17140
11
1274
6.051
0.99
57
883.7
3.672
0.94
69
Species
Trichosurus vulpecula
1994
3.8
Wallabia bicolor
Isoodon macrourus
1551
3.202
Isoodon obesulus
Perameles gunnii
Ta (ºC)
C
837
2.343
847.4
3.896
0.89
90
Ornithorhynchus anatinus
1315
2.665
1650
5.441
0.94
33
Tachyglossus aculeatus*
2909
2.327
4078
2.92
0.81
71
Aquila chrysaetos
3458
106
0.99
22
Haliaeetus leucocephalus
4501
124.7
0.99
119
Archilochus alexandri
4.46
0.427
0.97
58
Selasphorus rufus
3.57
0.345
0.97
21
Sternoclyta cyanopectus
8.51
0.541
0.81
93
Geococcyx californianus
342.5
12.09
1
11
Buteo jamaicensis
1138
37.16
1
14
Buteo swainsoni
686
33.65
0.98
11
Cathartes aura
2062
51.96
0.97
26
Coragyps atratus
2049
43.78
0.96
81
Falco mexicanus
566.5
27.41
0.99
8
29.22
3.87
0.89
78
12.25
1.389
0.84
120
Monotremeta
Neornithes (altricial)
Acrocephalus arundinaceus
Acrocephalus melanopogon
21.9
0.257
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
12.81
1.523
0.92
45
Acrocephalus scirpaceus
12.16
1.473
0.78
106
Aimophila carpalis
Campylorhynchus
brunneicapillus
13.6
1.689
1
11
34.8
2.31
0.91
49
Species
Acrocephalus palustris
Metabolic
Mass (g)
Metabolic
Rate (W)
10.8
0.203
Ta (ºC)
Corvus brachyrhynchos
384.8
3.283
436.1
23.91
0.99
13
Corvus corax
1203
5.534
973.4
51.01
0.98
20
Corvus cryptoleucus
476.2
26.18
Parus caeruleus
12.62
1.16
0.99
15
26.13
3.898
0.96
30
197.5
13.33
0.98
25
Passer domesticus
25.5
0.334
Pica pica
Spizella passerina
C
11.9
0.194
11.42
1.744
0.98
16
Spizella pusilla
13
0.264
12.51
1.692
0.99
8
Sturnus vulgaris
75
0.877
76.63
8.889
0.98
22
Amazona aestiva
332.4
10.5
0.86
55
Amazona agilis
191.5
9.867
0.89
162
Ara macao
1017
28.35
0.91
1320
Cyanoliseus patagonus
289.1
21.36
0.46
294
Myiopsitta monachus
105
6.917
0.96
34
Nymphicus hollandicus
77.9
3.913
0.81
138
Poicephalus cryptoxanthus
125.7
5.29
0.99
65
128
6.405
0.99
14
626.7
20.85
1
10
Aix galericulata
559.4
9.994
0.99
24
Anas rubripes
1115
26.44
1
9
Aythya affinis
564.1
16.95
0.99
9
Megascops asio
Tyto alba
Neornithes (Precocial)
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
Aythya americana
877.4
19.57
0.99
27
Aythya valisineria
1204
25.57
0.98
107
Branta hutchinsii
1269
36.06
0.96
54
Chen caerulescens
2383
55.16
0.9
133
Dendrocygna autumnalis
729.5
12.15
0.93
87
528.8
8.174
1
10
Alectura lathami
1860
10.91
0.99
34
Coturnix chinensis
58.09
1.328
0.99
68
Species
Alectoris chukar
Metabolic
Mass (g)
475
Metabolic
Rate (W)
1.961
Ta (ºC)
Coturnix coturnix
115
0.978
118.9
2.229
0.99
16
Dendragapus obscurus
1131
4.957
748.7
11.5
0.84
46
Gallus gallus
121.8
0.8919
904.8
7.854
0.99
96
Meleagris gallopavo
3700
8.91
6600
40.42
1
59
Numida meleagris
1669
17.69
1
46
Pavo cristatus
3439
10.38
0.96
162
Phasianus colchicus
1187
6.05
0.94
213
Tetrao tetrix
1172
14.07
0.98
12
2442
34.94
796.8
10.53
0.95
60
Tetrao urogallus
4010
11.63
Tympanuchus pallidicinctus
C
Apteryx mantelli
2380
4.029
2154
4.291
0.95
366
Casuarius bennetti
17600
24.99
17600
89.19
1
11
44000
146.3
1
11
Casuarius casuarius
Dromaius novaehollandiae
40700
33
46660
117.7
0.97
37
Rhea americana
21800
34.69
21740
113.6
0.93
246
672.8
5.895
1
236
101600
287.8
0.99
7
Rhynchotus rufescens
Struthio camelus
Sharks
1.00E+05
63.05
Table S1
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Final growth
Mass (g)
Gmax (g d–1)
r2
n
650
0.6085
28
43450
16.59
1
35
Carcharhinus brevipinna
194600
27.03
0.95
21
Carcharhinus falciformis
144700
27.41
0.87
197
Carcharhinus leucas
136100
20.78
0.94
23
Carcharhinus limbatus
40600
11.22
0.86
61
54090
12.65
0.58
226
Carcharhinus signatus
98200
12.31
0.88
215
Carcharhinus sorrah
22030
14.99
0.73
176
Carcharhinus tilstoni
44060
8.723
0.84
335
Galeocerdo cuvier
331600
82.8
0.98
25
183700
25.97
0.99
90
121400
31.18
0.87
13
Rhizoprionodon lalandii
1295
0.403
0.99
7
Rhizoprionodon porosus
4045
0.868
1
6
Rhizoprionodon taylori
717.3
0.864
0.9
135
Scoliodon laticaudus
2361
0.681
1
12
Species
Carcharhinus acronotus
Carcharhinus plumbeus
Negaprion brevirostris
3279
1600
1.153
0.9588
24
25
Prionace glauca
Sphyrna lewini
700
0.5182
24.5
49400
6.695
0.8
233
Sphyrna tiburo
1100
0.6721
25
1424
1.097
0.7
110
Isurus oxyrinchus *
6016
2.922
18.3
141300
20.89
0.95
56
3249000
327.4
1
16
3840
0.793
0.73
312
15640000
668.4
0.92
18
60
0.39
0.75
148
Basiliscus basiliscus
124.4
0.204
0.8
89
Ctenosaura pectinata
209
0.529
1
54
Cretoxyrhina mantelli φ
Chiloscyllium plagiosum
Rhincodon typus
880
0.1609
23
Squamata
Agama impalearis
Table S1
Final growth
Mass (g)
Gmax (g d–1)
13.78
0.021
Sceloporus grammicus
9.7
0.019
0.98
59
Sceloporus mucronatus
32.82
0.014
0.91
192
Sceloporus scalaris
8.45
0.022
0.97
62
Microlophus occipitalis
9.37
0.025
0.8
194
Tropidurus itambere
21.61
0.039
0.97
33
Tropidurus torquatus
49.55
0.105
Uranoscodon superciliosus
120.2
0.086
0.99
23
Xenosaurus grandis
68.03
0.028
0.96
117
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Liolaemus lutzae
r2
n
C
C
Acrochordus arafurae
1048
0.1579
27
1693
0.766
0.95
18
Acanthophis praelongus
105.5
0.03004
27
60.42
0.074
0.98
8
Eublepharis macularius
48.8
0.02207
26.5
50.48
0.058
0.8
131
Coleonyx brevis
2.1
0.00178
31.8
2.27
0.01
0.91
27
Coleonyx elegans
9.3
0.00384
23.8
14.28
0.012
0.82
75
Coleonyx mitratus
11.3
0.0036
25.7
10.6
0.012
0.88
142
Heloderma suspectum
463.9
0.1476
25
238.8
0.148
0.99
23
Liasis fuscus
1307
0.1299
27
2642
1.483
0.92
300
1230
0.469
0.97
84
Oligosoma suteri
4.8
0.01
0.99
7
Varanus indicus
1809
2.093
0.88
622
Varanus komodoensis
63350
6.146
14530
4.672
0.66
290
279.3
0.639
1
18
Tenualosa toli
7608
4.598
0.78
60
Labeo cylindricus
200.9
0.115
0.95
9
Morelia viridis
Varanus niloticus
Varanus semiremex
32.5
0.01736
25
C
Teleost Fish
Table S1
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Poecilia latipinna
Final growth
Mass (g)
Gmax (g d–1)
r2
n
2.4
0.012
0.99
25
Poecilia reticulata
0.53
0.00104
25
0.56
0.002
1
15
Xiphophorus maculatus
1.8
0.00129
25
0.65
0.002
0.97
18
Acanthurus lineatus
269.6
0.107
0.52
81
Acanthurus olivaceus
442.8
0.426
0.6
55
Ctenochaetus striatus
194.2
0.115
0.44
101
Naso brevirostris
871.2
0.166
0.85
79
Naso tuberosus
2015
1.507
0.84
55
Zebrasoma scopas
109.8
0.053
0.48
43
Salarias patzneri
2.44
0.01
0.51
101
Chaetodon larvatus
38.2
0.061
0.53
109
Cichla intermedia
1083
1.702
0.69
14
Cichla orinocensis
1620
0.997
0.64
36
Cichla temensis
5107
2.78
0.46
44
Oreochromis macrochir
177.8
0.1
0.97
12
Pharyngochromis darlingi
68.22
0.052
1
17
Pseudocrenilabrus philander
8.76
0.017
1
18
Amblygobius bynoensis
98.68
0.092
0.61
120
Amblygobius phalaena
23.27
0.043
0.83
99
Asterropteryx semipunctatus
7.3
0.01
0.91
67
Istigobius goldmanni
18.6
0.019
0.87
71
Valenciennea muralis
7.27
0.024
0.67
106
Cheilinus undulatus
12560
1.492
0.59
89
Lutjanus erythropterus
2770
1.609
0.91
84
Lutjanus malabaricus
5527
2.146
0.86
44
Lutjanus sebae
9996
2.309
0.71
65
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
Pristipomoides multidens
4387
1.099
0.99
14
Pristipomoides typus
2599
0.855
1
11
Species
Metabolic
Mass (g)
Metabolic
Rate (W)
Ta (ºC)
Notothenia neglecta
32.38
0.00267
0
1241
0.231
0.99
19
Notothenia rossi
761.1
0.045
3
9706
1.196
0.96
28
Trematomus bernacchii
178.1
0.0346
-1.5
168.4
0.094
0.96
14
Trematomus hansoni
547.8
0.02405
3
477.8
0.093
Trematomus loennbergii
158.1
0.02155
-1.5
292
0.054
0.99
24
Stegastes fuscus
35.42
0.008
0.64
162
Chlorurus gibbus
3952
1.084
0.67
64
Chlorurus sordidus
368
0.237
0.57
63
Scarus frenatus
685.2
0.431
0.63
76
Scarus niger
670.8
0.358
0.73
65
Scarus psittacus
228.7
0.211
0.72
31
Scarus rivulatus
3231
0.529
0.75
72
Scarus schlegeli
704.5
0.245
0.89
43
EQ
Euthynnus affinis *
1278
1.9
25
10000
6.798
Katsuwonus pelamis *
594
0.93
25
15610
8.498
1
9
Thunnus albacares *
1129
1.14
25
49250
23.65
1
8
Thunnus obesus *
2030
2.56
25
74670
31.95
0.97
15
Thunnus tongol *
26500
15.91
Epinephelus fuscoguttatus
8953
1.176
0.82
119
Epinephelus polyphekadion
3156
0.555
0.73
71
Epinephelus tukula
24710
2.979
0.69
59
Mycteroperca rosacea
22730
1.907
0.99
18
Plectropomus laevis
14730
3.63
0.62
21
Plectropomus leopardus
5062
0.559
0.6
155
EQ
C
Table S1
Final growth
Mass (g)
Gmax (g d–1)
r2
n
Variola louti
1555
0.818
0.52
91
Siganus sutor
2302
2.178
0.94
46
Diplodus sargus
1018
0.325
0.99
13
Rhabdosargus sarba
14670
2.911
0.87
109
3388
0.242
719.7
0.871
0.38
90
545400
50.91
0.96
133
Species
Hippoglossoides platessoides
Metabolic
Mass (g)
277
Metabolic
Rate (W)
0.021
Ta (ºC)
3
Sorubim lima
Masturus lanceolatus
EQ
Testudines
Chelonia mydas
22000
4.18
25
70310
9.679
1
14
Dermochelys coriacea *
354000
141.6
23
310500
166.9
0.99
87
Table S2. Summary of Parameter Statistics. Taxa highlighted in bold were fitted with regression lines in Fig. 1. The
geometric means for taxonomic values of mass-independent maximum growth rate G0 are provided. Significant differences
in G0 from Tukey’s HSD test are indicated by bolded letters (alpha = 0.05), where differences are significant if the given
letter differs from the letter assigned to another taxa. Slope values for Fig. 1B are provided (Gmax vs. M), calculated via
ordinary least squares criterion (OLS), or standardized major axis (SMA), with and without phylogenetically independent
contrasts (PIC). The intercept β and slope α reported describe the relationship: Gmax = βMα, where M is final adult mass. r2
and n values are equivalent for SMA and OLS methods. For Fig. 1A, the OLS regressions are – Endotherms: 0.112M0.59;
Ectotherms: 0.0034M0.72; Dinosaurs: 0.0031M0.82
Table S2
G0 (× 103)
(g1/4 d–1)
Taxon
Neornithes
Altricial Birds
203
a
Gmax OLS
Interc. β
Gmax Slope
OLS (CI)
Gmax Slope
RMA (CI)
0.32
0.59
(0.52–0.66)
(0.58–0.73)
0.19
0.76
(0.71–0.81)
(0.72–0.83)
Passeriformes
Precocial Birds
65.4
b
0.13
Mammalia
0.65
0.77
0.79
0.80
(0.72–0.87)
(0.83–0.89)
0.66
0.74
(0.53–0.79)
(0.62–0.88)
0.64
0.67
(0.61–0.67)
(0.64–0.71)
Placentalia
22.5
c
0.056
0.64
0.67
(0.61–0.67)
(0.64–0.70)
Marsupials
20.2
c
0.040
0.66
0.69
(0.54–0.77)
(0.59–0.82)
7.93
d
0.0029
0.82
0.84
(0.74–0.90)
(0.76–0.92)
Dinosaurs
Dinosaurs excluding
Sauropods
Theropoda
0.77
0.80
(0.64–0.90)
(0.68–0.95)
0.75
0.77
(0.63–0.88)
(0.65–0.91)
Tuna
6.93 de
0.0043
0.80
0.80
(0.63–0.97)
(0.65–0.99)
Squamata
3.53
0.0037
0.74
0.78
(0.63–0.85)
(0.68–0.90)
e
Sharks
Sharks
(excluding mako)
3.52
e
0.0023
Fish
Fish (excluding
tuna)
2.73
e
0.0033
0.77
0.80
(0.68–0.86)
(0.71–0.90)
0.79
0.82
(0.66–0.90)
(0.72–0.94)
0.75
0.78
(0.70–0.81)
(0.72–0.84)
0.71
0.74
(0.66–0.77)
(0.68–0.79)
Gmax PIC Slope
OLS (CI, r2, n)
0.73
Gmax PIC Slope
SMA (CI)
n
r2
63
0.83
35
0.96
0.77
0.84
(0.68–0.85, 0.90, 35)
(0.73–0.96)
15
0.97
0.89
0.94
(0.78–1.0, 0.95, 15)
(0.81–1.08)
28
0.80
0.74
0.83
(0.60–0.88, 0.81, 28)
(0.68–1.00)
174
0.91
0.62
0.72
(0.57–0.67, 0.75, 172)
(0.66–0.79)
153
0.91
0.63
0.72
(0.57–0.68, 0.77, 151)
(0.66–0.79)
19
0.90
0.49
0.73
(0.25–0.73, 0.50, 19)
(0.43–1.30)
21
0.96
(0.64–0.88, 0.90, 21)
15
0.93
0.71
0.74
(0.56–0.86, 0.90, 13)
(0.59–0.93)
10
0.96
0.71
0.74
(0.54–0.88, 0.91, 10)
(0.56–0.96)
5
0.99
0.74
0.73
(0.54–0.94, 0.97; 5)
(0.48–1.10)
26
0.89
0.56
0.67
(0.42–0.70; 0.72; 26)
(0.52–0.88)
22
0.94
0.74
0.81
(0.60–0.89, 0.85, 21)
(0.66–0.98)
21
0.92
0.74
0.81
(0.59–0.89, 0.85, 20)
(0.66–0.99)
55
0.92
0.74
0.83
(0.61–0.87, 0.76, 45)
(0.70–0.99)
50
0.93
0.73
0.83
(0.59–0.87, 0.74, 40)
(0.67–1.00)
(0.65–0.81, 0.84, 63)
0.76
0.82
(0.73–0.92)
0.79
(0.67–0.93)
Table S2
Taxon
G0 (× 103)
(g1/4 d–1)
Crocodylia
1.90
e
Gmax OLS
Interc. β
Gmax Slope
OLS (CI)
0.0020
0.75
0.76
(0.63–0.86)
(0.66–88)
Gmax Slope
RMA (CI)
n
r2
Gmax PIC Slope
OLS (CI, r2, n)
Gmax PIC Slope
SMA (CI)
12
0.96
0.73
0.82
(0.58–0.88; 0.91; 12)
(0.64–1.06)
Table S3. A summary of species characteristics and references. Abbreviations: B: basal or standard metabolic rate,
m0 is neonate mass, L: length, SVL: snout-vent length, FL: fork length, PCL: pre-caudal length, F: female, M: male,
W is wild, C is captive, B is both. If the wild or captive status was not reported, then no code is given. In some
cases, length-mass relations were calculated by the authors using data provided in the L-M reference. Growth in the
leatherback turtle, Dermochelys coriacea, was based on captive turtles grown at 25 ºC, not wild turtle data provided
in the reference, as many wild individuals forage and grow in cold, temperate waters.
Table S3
Wild/
Captive
Gowth
Ref.
B
Ref.
Length–Mass Equation
L–M
Ref
m0 Ref
Alligator mississipiensis
W
(77)
(12)
kg = 2.84·TL(m)3.342 (estuarine)
kg = 1.86·TL(m)3.593 (palustrine)
(77)
(78)
Caiman crocodilus
W
(79, 80)
(81)
g = 0.0049·TL(cm)3 (calculated)
(82)
Caiman latirostris
W
(83)
g = 0.0049·TL(cm)3 (calculated, C. crocodilus)
(82)
(78)
Brachychampsa montana
W
(84)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(69)
Deinosuchus sp.
W
(84)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(69)
Leidyosuchus canadens
W
(84)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(69)
Crocodylus 'affinis'
W
(84)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(69)
Crocodylus johnstoni
W
(86)
g = 0.0049·TL(cm)3 (calculated, C. crocodilus)
(82)
(78)
Crocodylus niloticus
W
(87)
(88)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(78)
Crocodylus porosus
W
(89)
(90)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(78)
Borealosuchus sternbergii
W
(84)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(69)
Pristichampsus vorax
W
(84)
g = 8.38E-6 · SVL(mm)3.189 (C. niloticus)
(85)
(69)
W
(7)
Species
Crocodylia
Mesozoic Dinosaurs
Psittacosaurus mongoliensis
(66)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Dysalotosaurus
lettowvorbecki
W
(91)
(66)
Tenontosaurus tilletti
W
(8)
(66)
Massospondylus carinatus
W
(7)
(66)
Plateosaurus engelhardti
W
(92)
(66)
Apatosaurus sp.
W
(92)
(66)
Camarosaurus sp.
W
(92)
(66)
Diplodocid sp. 1
(92)
(66)
Diplodocid sp. 2
(92)
(66)
Mamenchisaurid sp.
(92)
(66)
Length–Mass Equation
L–M
Ref
m0 Ref
Alamosaurus sanjuanensis
W
(75)
(66)
Allosaurus fragilis
W
(8)
(66)
Coelophysis bauri
W
(93)
Megapnosaurus rhodesiensis
W
(7)
(66)
Albertosaurus sarcophagus
W
(76)
(66)
Archaeopteryx lithographica
W
(17)
(66)
Citipati osmolskae
W
(94)
(65)
Gorgosaurus libratus
W
(76)
(66)
Saurornitholestes langstoni
W
(95)
(66)
Troodon formosus
W
(94)
(65)
Tyrannosaurus rex
W
(8, 76)
(66)
W
(96)
kg = 10-6.288 • femur length3.222
(93)
(66)
Placental Mammals
Acinonyx jubatus
(97)
(98)
Table S3
Species
Wild/
Captive
Gowth
Ref.
Callorhinus ursinus
W
(99)
(98)
Canis lupus
W
(100)
(98)
Caracal caracal
C
(101)
(98)
Puma concolor
W
(102)
(98)
Lynx rufus
W
(103)
Mustela nigripes
C
(104)
Mustela nivalis
C
(105)
Mustela putorius
C
(106)
(98)
Panthera leo
W
(107)
(98)
Panthera tigris
C
(108)
Ursus arctos
W
(109)
(98)
Vulpes lagopus
W
(110)
(98)
Balaenoptera acutorostrata
W
(111)
Balaenoptera borealis
W
(111)
Balaenoptera edeni
W
(113)
Balaenoptera musculus
W
(111)
(112)
(98)
Balaenoptera physalus
W
(111)
(112)
(98)
Eschrichtius robustus
W
(115)
Megaptera novaeangliae
W
(111)
Delphinapterus leucas
W
(116)
kg = 1.56E-4·TL(cm)2.605
(117)
(98)
Delphinus delphis
W
(118)
kg = 5.6E-6·TL(cm)3.14 (calculated)
(119)
(98)
Globicephala melas
W
(120)
B
Ref.
Length–Mass Equation
L–M
Ref
(97)
m0 Ref
(98)
(97)
(112)
(98)
tonne = 0.012·TL(m)2.74
tonne = 0.0051·TL(m)3.28
(114)
(114)
(98)
(98)
(98)
Table S3
Species
Wild/
Captive
Gowth
Ref.
Monodon monoceros
W
(121)
Orcinus orca
W
(122)
Physeter catodon
W
(124)
Pontoporia blainvillei
W
Pseudorca crassidens
B
Ref.
Length–Mass Equation
L–M
Ref
m0 Ref
(98)
kg = 6E-6·TL(cm)3.2
(123)
(98)
tonne = 0.0029·TL(m)3.55
(114)
(98)
(125)
kg = 8.37E-4·TL(cm)2.1244
(126)
(98)
W
(127)
kg = 5.6E-6·TL(cm)3.14 (calculated)
(119)
Sousa chinensis
W
(119)
kg = 5.6E-6·TL(cm)3.14 (calculated)
(119)
Stenella attenuata
W
(128)
kg = 5.6E-6·TL(cm)3.14 (calculated)
(119)
Stenella longirostris
W
(129)
kg = 5.6E-6·TL(cm)3.14 (calculated)
(119)
Tursiops truncatus
W
(130)
Aepyceros melampus
(112)
(131)
(98)
(132)
Alces alces
W
(133)
Bison bison
W
(134)
Bison bonasus
W
(135)
Cervus elaphus
(132)
Connochaetes gnou
C
(136)
Eudorcas thomsonii
W
(137)
Hippopotamus amphibius
W
(138)
Hippotragus niger
W
(140)
(98)
(97)
(98)
(98)
(97)
(98)
(98)
kg = 2.5E-4·L(cm)2.7
(139)
(98)
Kobus ellipsiprymnus
(132)
(98)
Kobus leche
(132)
(98)
Odocoileus hemionus
C
(141)
Odocoileus virginianus
C
(142)
(97)
(98)
Table S3
Species
Wild/
Captive
Gowth
Ref.
Pudu puda
C
(143)
Rangifer tarandus
W
(144)
(97)
Sus scrofa
W
(145)
(97)
Syncerus caffer
W
(146)
Artibeus watsoni
W
(147)
Eptesicus fuscus
W
(148)
Hipposideros larvatus
W
(149)
Hipposideros terasensis
W
(150)
Hypsignathus monstrosus
C
(151)
Myotis blythii
W
(152)
Myotis lucifugus
W
(153)
Myotis macrodactylus
W
(154)
Phyllostomus hastatus
W
(155)
Pipistrellus subflavus
W
(156)
Plecotus auritus
C
(157)
Pteropus conspicillatus
C
(158)
Pteropus poliocephalus
C
(159)
Rhinolophus cornutus
C
(161)
Rhinolophus hipposideros
W
(162)
Rousettus leschenaulti
W
(163)
Tolypeutes matacus
C
(164)
Lepus americanus
(165)
B
Ref.
Length–Mass Equation
L–M
Ref
m0 Ref
(98)
(98)
(97)
(97)
(97)
(97)
(97)
(160)
(160)
(97)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Lepus californicus
C
(165)
(97)
Lepus othus
W
(165)
Lepus townsendii
W
(165)
(98)
Oryctolagus cuniculus
C
(166)
(166)
Sylvilagus floridanus
C
(167)
(98)
Cryptotis parva
C
(168)
(97)
Neomys fodiens
C
(169)
(97)
Sorex cinereus
W
(170)
(97)
Sorex palustris
C
(171)
Sorex unguiculatus
C
(172)
Suncus murinus
C
(173)
(97)
Macroscelides proboscideus
C
(174)
(97)
Ceratotherium simum
W
(175)
(98)
(176)
(98)
Diceros bicornis
Equus ferus
C
(177)
Equus quagga
W
(178)
Rhinoceros unicornis
C
(179)
Aotus trivirgatus
C
(180)
Ateles geoffroyi
C
(180)
Callicebus moloch
C
(181)
Callimico goeldii
C
(181)
Callithrix jacchus
C
(181)
Length–Mass Equation
L–M
Ref
m0 Ref
(97)
(97)
(98)
(97)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Cebuella pygmaea
C
(181)
(97)
Cebus apella
C
(180)
Cercopithecus aethiops
C
(182)
Cercopithecus mitis
C
(180)
Gorilla gorilla
C
(183)
Homo sapiens
W
(166)
Leontopithecus rosalia
C
(181)
Lophocebus albigena
C
(184)
Macaca fuscata
B
(185)
Macaca mulatta
C
(186)
Macaca nemestrina
C
(180)
Macaca silenus
C
(180)
Pan troglodytes
W
(188)
Papio cynocephalus
C
(180)
Saguinus imperator
C
(181)
Saimiri sciureus
C
(190)
Tarsius bancanus
C
(191)
Eulemur coronatus
C
(192)
Eulemur macaco
C
(192)
Eulemur mongoz
C
(192)
Eulemur rubriventer
C
(192)
Eulemur rufus
C
(192)
Length–Mass Equation
L–M
Ref
m0 Ref
(98)
(97)
(98)
(97)
(187)
(98)
(189)
(98)
(98)
(97)
(98)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Galago senegalensis
C
(193)
(97)
(98)
Hapalemur griseus
C
(192)
Loris tardigradus
C
(193)
(97)
(98)
Microcebus murinus
C
(194)
(195)
Nycticebus coucang
C
(193)
(97)
(98)
Otolemur crassicaudatus
C
(193)
(97)
(98)
Propithecus diadema
C
(196)
(196)
Propithecus tattersalli
C
(196)
(98,
196)
Propithecus verreauxi
C
(196)
Varecia variegata
C
(192)
Elephas maximus
C
(197)
Loxodonta africana
W
(198)
Acomys cahirinus
C
(199)
Akodon lindberghi
C
(200)
Apodemus semotus
C
(201)
Arvicanthis niloticus
W
(202)
Ctenomys mendocinus
C
(203)
Dipodomys stephensi
C
(204)
Eligmodontia typus
C
(205)
Funisciurus congicus
C
(206)
Gerbillus perpallidus
C
(199)
Hoplomys gymnurus
C
(207)
(97)
Length–Mass Equation
L–M
Ref
m0 Ref
(98)
(97)
(98)
(97)
(98)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Mastomys coucha
C
(208)
Mastomys natalensis
C
(208)
Microtus cabrerae
C
(209)
Neotoma cinerea
W
(210)
Otomys unisulcatus
C
(211)
(97)
Paraxerus cepapi
C
(206)
(97)
Paraxerus palliatus
C
(206)
(97)
Peromyscus eremicus
C
(212)
(97)
Peromyscus interparietalis
C
(212)
Peromyscus leucopus
C
(213)
(97)
Peromyscus maniculatus
C
(214)
(97)
Proechimys semispinosus
C
(207)
Scotinomys teguina
C
(215)
(97)
Scotinomys xerampelinus
C
(215)
(97)
Spermophilus armatus
C
(216)
(97)
Spermophilus columbianus
C
(216)
Spermophilus elegans
C
(216)
Spermophilus richardsonii
C
(216)
Tupaia belangeri
C
(217)
Antechinus flavipes
C
(218)
(97)
(219)
Antechinus stuartii
C
(220)
(97)
(219)
Length–Mass Equation
L–M
Ref
m0 Ref
(97)
(98)
(98)
(98)
(98)
(97)
(98)
Marsupials
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Didelphis virginiana
W
(221)
(97)
Bettongia lesueur
C
(222)
(219)
(132)
(219)
(223)
(219)
Macropus robustus
(132)
(224)
Macropus rufus
(132)
(97)
(97)
Macropus giganteus
Macropus parma
C
Length–Mass Equation
L–M
Ref
m0 Ref
(219)
(219)
Petaurus breviceps
C
(225)
Petaurus norfolcensis
C
(225)
Phascolarctos cinereus
C
(226)
(97)
(219)
Pseudocheirus peregrinus
C
(227)
(97)
(219)
Thylogale billardierii
C
(228)
(219)
Trichosurus caninus
C
(229)
(219)
Trichosurus vulpecula
(230)
Wallabia bicolor
(132)
(219)
(97)
(219)
(219)
Isoodon macrourus
C
(231)
(97)
(219)
Isoodon obesulus
B
(232)
Perameles gunnii
B
(232)
(97)
(219)
Ornithorhynchus anatinus
C
(233,
234)
(97)
(224)
Tachyglossus aculeatus
W
(235)
(97)
W
(236)
(219)
Monotremes
Precocial Birds
Aix galericulata
Table S3
Species
Wild/
Captive
Gowth
Ref.
Anas rubripes
C
(237)
Aythya affinis
C
(238)
Aythya valisineria
W
(238)
Branta hutchinsii
W
(239)
Chen caerulescens
C
(240)
Dendrocygna autumnalis
W
(241)
Alectoris chukar
C
(242)
Alectura lathami
C
(244)
Coturnix chinensis
C
(245)
Coturnix coturnix
C
(243,
245)
(243)
Dendragapus obscurus
C
(246)
(243)
Gallus gallus
W
(247)
(243)
Tetrao tetrix
C
(248)
Meleagris gallopavo
C
(249)
Numida meleagris
W
(250)
Pavo cristatus
C
(244)
Phasianus colchicus
C
(244)
Tetrao urogallus
C
(252)
Tympanuchus pallidicinctus
W
W
(254)
Casuarius bennetti
C
(255,
256)
Casuarius casuarius
C
(255,
256)
Length–Mass Equation
L–M
Ref
m0 Ref
(243)
(243)
(251)
(253)
Apteryx mantelli
B
Ref.
(243)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Dromaius novaehollandiae
C
(257)
(243)
Rhea americana
C
(258)
(259)
Rhynchotus rufescens
C
(260)
Struthio camelus
C
(261)
Aquila chrysaetos
W
(262)
Haliaeetus leucocephalus
W
(263)
Archilochus alexandri
W
(264)
Selasphorus rufus
W
(265)
Sternoclyta cyanopectus
W
(266)
Geococcyx californianus
C
(267)
Buteo jamaicensis
W
(268)
Buteo swainsoni
W
(269)
Cathartes aura
W
(270)
Coragyps atratus
W
(270)
Falco mexicanus
W
(271)
Acrocephalus arundinaceus
W
(272)
Acrocephalus melanopogon
W
(272)
Acrocephalus palustris
W
(272)
Acrocephalus scirpaceus
W
(272)
Aimophila carpalis
W
(273)
Campylorhynchus
brunneicapillus
W
(274)
(243)
Altricial Birds
(243)
(243)
Length–Mass Equation
L–M
Ref
m0 Ref
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Length–Mass Equation
L–M
Ref
Corvus brachyrhynchos
W
(275)
Corvus corax
W
(275)
Corvus cryptoleucus
W
(277)
Parus caeruleus
W
(278)
Passer domesticus
W
(279)
Pica pica
W
(275)
Spizella passerina
W
(280)
Spizella pusilla
W
(281)
(282)
Sturnus vulgaris
W
(283)
(243)
Amazona aestiva
W
(284)
Amazona agilis
W
(285)
Ara macao
W
(286)
Cyanoliseus patagonus
W
(287)
Myiopsitta monachus
W
(288)
Nymphicus hollandicus
C
(289)
Poicephalus cryptoxanthus
C
(290)
Megascops asio
W
(281)
Tyto alba
W
(281)
Carcharhinus acronotus
W
(291)
g = 0.0127·TL(cm)3; TL = 1.215·FL
(293)
Carcharhinus brevipinna
W
(294)
kg = 3E-06·TL(cm)3.145
(294)
Carcharhinus falciformis
W
(295)
kg = 2.73E-5·PCL(cm)2.86
(295)
(276)
(243)
Sharks
(292)
m0 Ref
Table S3
Species
Wild/
Captive
Gowth
Ref.
Carcharhinus leucas
W
Carcharhinus limbatus
B
Ref.
Length–Mass Equation
L–M
Ref
(296)
kg = 2.71E-5·TL·(cm)3.30
(296)
W
(297)
g = 0.0144·TL(cm)2.870
(293)
Carcharhinus plumbeus
W
(298)
g = 0.0254·PCL(cm)2.691
(298)
Carcharhinus signatus
W
(300)
g = 0.0091·TL(cm)2.886
(293)
Carcharhinus sorrah
W
(301)
g = 7.2E-4·TL(cm)3.656
(293)
Carcharhinus tilstoni
W
(301)
g = 0.0144·TL(cm)2.870 (C. limbatus)
(293)
Galeocerdo cuvier
W
(302)
kg = 1.41E-6·TL(cm)3.24
(302)
Negaprion brevirostris
W
(293,
303)
g = 0.0053·SL(cm)3.16
(293)
Prionace glauca
W
(306)
(293)
g = 0.00318·FL(cm)3.131; FL = 0.822·TL
(293)
Rhizoprionodon lalandii
W
(307)
g = 0.0012·TL(cm)3.14 (R. porosus)
(293)
Rhizoprionodon porosus
W
(307)
g = 0.0012·TL(cm)3.14
(293)
Rhizoprionodon taylori
W
(308)
g = 0.0012·TL(cm)3.14 (R. porosus)
(293)
(299)
(304) 266)
m0 Ref
(293)
(305)
(293)
2.784
Scoliodon laticaudus
W
(309)
Sphyrna lewini
W
(310)
Sphyrna tiburo
W
(311)
g = 0.0086·FL(cm)
(female)
g = 0.0044·FL(cm)2.935 (male)
(293)
(292)
g = 0.0077·FL(cm)3.067
(293)
(292)
g = 0.0016·FL(cm)3.16
FL = 0.797·TL
(293)
2.9851
Cretoxyrhina mantelli
W
(312)
Isurus oxyrinchus
W
(314)
Chiloscyllium plagiosum
W
(316)
kg = 16.26·PCL(m)
PCL (cm) = 0.8535·TL(cm) - 0.09195
(313)
(315)
g = 0.0167·FL(cm)2.847; FL = 0.927·TL
(293)
(276)
g = 0.00509TL·(cm)2.87
(316)
(293)
3
Rhincodon typus
W
(317)
Agama impalearis
W
(318)
Basiliscus basiliscus
W
(319)
g = 0.0043·TL(cm)
TL(cm) = 20.309 + 1.252·PCL (cm)
(293)
g = 9.08E-6⋅SVL(mm)3.257
(319)
Squamates
(320)
Table S3
Species
Wild/
Captive
Gowth
Ref.
Ctenosaura pectinata
W
(321)
Liolaemus lutzae
W
Sceloporus grammicus
Length–Mass Equation
L–M
Ref
(322)
g = 0.031·SVL(cm)2.98
(323)
W
(324)
g = 1.95E-4·SVL(cm)2.62
(323)
Sceloporus mucronatus
W
(325)
g = 1.95E-4·SVL(cm)2.62
(323)
Sceloporus scalaris
W
(326)
g = 1.95E-4·SVL(cm)2.62
(323)
Microlophus occipitalis
W
(327)
g = 0.031·SVL(cm)2.98
(323)
Tropidurus itambere
W
(328)
g = 0.031·SVL(cm)2.98
(323)
Tropidurus torquatus
W
(329)
g = 0.031·SVL(cm)2.98
(323)
Uranoscodon superciliosus
W
(330)
g = 0.031·SVL(cm)2.98
(323)
Xenosaurus grandis
W
(331)
g = 0.031·SVL(cm)2.98
(323)
(320)
Eublepharis macularius
C
(332)
(333)
Coleonyx brevis
C
(332)
(333)
Coleonyx elegans
C
(332)
(333)
Coleonyx mitratus
C
(332)
(333)
Acrochordus arafurae
W
(334)
(12)
g = 3.2E-4·SVL(cm)3.14
(335)
(320)
Acanthophis praelongus
W
(336)
(12)
g = 3.2E-4·SVL(cm)3.14
(335)
Liasis fuscus
W
(337)
(12)
g = 3.2E-4·SVL(cm)3.14
(335)
(320)
Morelia viridis
W
(338)
g = 3.2E-4·SVL(cm)3.14
(335)
(320)
Heloderma suspectum
W
(339)
g = 9.09E-6·SVL(mm)3.47
(341)
Oligosoma suteri
C
(342)
g = 0.031·SVL(cm)2.98
(323)
Varanus indicus
C
(343)
Varanus komodoensis
W
(344)
g = 0.016·SVL(cm)3.07 (calculated)
(345,
346)
B
Ref.
(340)
m0 Ref
(320)
(347)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Length–Mass Equation
L–M
Ref
Varanus niloticus
W
(348)
(88)
kg = 9.65E-6·SVL (cm)3.161
(348)
Varanus semiremex
C
(349)
log(g) = 2.70·log(SVL(mm)) - 4.09
(323)
Tenualosa toli
W
(350)
g = 0.0119·FL(cm)3.087; FL = 1.08SL
(293)
(68)
Danio rerio
C
(351)
Labeo cylindricus
W
(352)
g = 0.0105·FL(cm)3.010
(352)
(68)
Poecilia latipinna
C
(353)
g = 0.0084·TL(cm)3.0447 (P. reticulata)
(354)
(68)
Poecilia reticulata
W
(354)
(355)
g = 0.0084·TL(cm)3.0447
(354)
(68)
(356)
(357)
g = 0.0236·SL(cm)3
(293)
(68)
m0 Ref
Teleost Fish
Xiphophorus maculatus
Acanthurus lineatus
C
(358)
g = 2.219E-5·SL(mm)2.691
(358)
(68)
Acanthurus olivaceus
W
(358)
g = 3.385E-5·SL(mm)3.055
(358)
(68)
Ctenochaetus striatus
W
(358)
g = 3.517E-5·SL(mm)3.066
(358)
(68)
Naso brevirostris
W
(358)
g = 1.088E-4·SL(mm)2.743
(358)
(68)
Naso tuberosus
W
(358)
g = 1.088E-4·SL(mm)2.743
(358)
(68)
Zebrasompa scopas
W
(358)
g = 6.302E-5·SL(mm)2.948
(358)
(68)
Salarias patzneri
W
(359)
g = 0.0176·SL(cm)3 (Salarias fasciatus)
(293)
(68)
Chaetodon larvatus
W
(360)
g = 0.0257·TL(cm)3.1
(293)
(68)
Cichla intermedia
W
(361)
g = 0.0327·TL(cm)2.771; TL = 1.19·SL
(293)
(68)
Cichla orinocensis
W
(361)
g = 0.0063·TL(cm)3.241; TL = 1.202·SL
(293)
(68)
2.771
Cichla temensis
W
(361)
g = 0.0327·TL(cm)
TL = 1.19·SL (C. intermedia)
(293)
(68)
Oreochromis macrochir
W
(362)
g = 0.014·TL(cm)3.106
(293)
(68)
Pharyngochromis darlingi
W
(363)
g = 1.55E-5·TL(mm)3.01
(363)
(68)
Table S3
Species
Wild/
Captive
Gowth
Ref.
Pseudocrenilabrus philander
W
Amblygobius bynoensis
B
Ref.
Length–Mass Equation
L–M
Ref
m0 Ref
(363)
g = 1.3E-5·TL(mm)3.03
(363)
(68)
W
(364)
g = 9.6E-6·TL(mm)3.01
(364)
(68)
Amblygobius phalaena
W
(364)
g = 1.33E-5·TL(mm)2.96
(364)
(68)
Asterropteryx semipunctatus
W
(364)
g = 9.5E-6·TL(mm)3.1
(364)
(68)
Istigobius goldmanni
W
(364)
g = 1.07E-5·TL(mm)2.99
(364)
(68)
Valenciennea muralis
W
(364)
g = 1.32E-5·TL(mm)2.84
(364)
(68)
Cheilinus undulatus
W
(365)
g = 0.0113·FL(cm)3.136
(293)
(68)
Lutjanus erythropterus
W
(366)
g = 0.0244·TL(cm)2.870
(293)
(68)
Lutjanus malabaricus
W
(366)
g = 0.0208·FL(cm)2.919
(293)
(68)
Lutjanus sebae
W
(366)
g = 0.0176·FL(cm)3.06
(293)
(68)
Pristipomoides multidens
W
(367)
g = 0.032·SL(cm)2.897
(293)
(68)
Pristipomoides typus
W
(367)
g = 0.038·SL(cm)2.822
(293)
(68)
Notothenia neglecta
W
(368)
(369)
g = 0.0085·TL(cm)3.1602
(368)
(68)
Notothenia rossi
W
(370)
(371)
g = 0.0112·(cm)3
(293)
(68)
(370)
(68)
(293)
(68)
Trematomus bernacchii
W
(370)
(372)
g = 1.6E-6·TL(mm)3 (F) (calc.)
g = 1.5E-6·TL(mm)3 (M) (calc.)
Trematomus hansoni
W
(373)
(371)
g = 0.0014·TL(cm)3.632
3.2916
W
(373)
Stegastes fuscus
W
(374)
g = 0.02·FL(cm)3.12
(374)
(68)
Chlorurus gibbus
W
(375)
g = 9.25E-5·SL(mm)2.85
(375)
(68)
Chlorurus sordidus
W
(375)
g = 1.82E-5·SL(mm)3.15
(375)
(68)
Scarus frenatus
W
(375)
g = 2.79E-5·SL(mm)3.06
(375)
(68)
Scarus niger
W
(375)
g = 2.57E-5·SL(mm)3.09
(375)
(68)
(372)
g = 1.16E-6·TL(mm)
(F)
g = 3.55E-6·TL(mm)3.2759 (M)
Trematomus lonnbergi
(68)
Table S3
Species
Wild/
Captive
Gowth
Ref.
Scarus psittacus
W
Scarus rivulatus
Length–Mass Equation
L–M
Ref
m0 Ref
(375)
g = 6.08E-5·SL(mm)2.90
(375)
(68)
W
(375)
g = 1.73E-5·SL(mm)3.14
(375)
(68)
Scarus schlegeli
W
(375)
g = 1.86E-5·SL(mm)3.12
(375)
(68)
Euthynnus affinis
W
(376)
(377)
g = 0.0254·FL(cm)2.889
(378)
(68)
Katsuwonus pelamis
W
(379)
(377)
g = 0.0069·FL(cm)3.287
(293)
(68)
Thunnus albacares
W
(379)
(377)
g = 0.0214·FL(cm)2.974
(293)
(68)
Thunnus obesus
W
(380)
(381)
g = 0.0119·FL(cm)3.09
(293)
(68)
Thunnus tongol
W
(382)
g = 0.0143·FL(cm)3
(293)
(68)
Epinephelus fuscoguttatus
W
(383)
g = 0.0134·FL(cm)3.057
(293)
(68)
Epinephelus polyphekadion
W
(384)
kg = 1E-5·TL(cm)3.11
(384)
(68)
Epinephelus tukula
W
(384)
kg = 1E-5·TL(cm)3.07
(384)
(68)
Mycteroperca rosacea
W
(385)
g = 0.0133·TL(cm)2.97
(293)
(68)
Plectropomus laevis
W
(384)
kg = 6E-6·FL(cm)3.20
(384)
(68)
Plectropomus leopardus
W
(386)
g = 0.0079·FL(cm)3.157
(386)
(68)
Variola louti
W
(384)
kg = 3E-6·FL(cm)3.35
(384)
(68)
Siganus sutor
W
(387)
g = 0.0597·TL(cm)2.754; SL = 0.846·TL
(387)
(68)
Diplodus sargus
W
(388)
g = 0.0097·TL(cm)3.123
(293)
(68)
Rhabdosargus sarba
W
(389)
g = 0.0277·SL(cm)3.085; FL = 0.868·SL
(293)
(68)
Hippoglossoides
platessoides
W
(390)
g = 0.0049·L(cm)3.10 (calculated)
(390)
(68)
Sorubim lima
W
(391)
g = 0.0109·SL(cm)2.94; SL = 0.98·FL
(293)
(68)
Masturus lanceolatus
W
(392)
kg = 9.98E-4·SL(cm)2.4488
(392)
(68)
Testudines
B
Ref.
(390)
Table S3
Species
Wild/
Captive
Gowth
Ref.
B
Ref.
Chelonia mydas
W
(393)
(394)
Dermochelys coriacea
C
(395)
(396)
L–M
Ref
Length–Mass Equation
Table S4. A summary of AICc statistics calculated for 3 ontogenetic growth models.
Table S4
Taxa
Average
AICc Gompertz
AICc von Bertalanffy
AICc logistic
Dinosaurs
Median
264.1
274.1
260.7
Dinosaurs
Mean
408.2
418.4
408.9
All Species
Median
355.4
355.3
358.6
All Species
Mean
754.9
754.8
761.7
m0 Ref
References and Notes
1. K. Padian, A. J. de Ricqlès, J. R. Horner, Dinosaurian growth rates and bird origins. Nature
412, 405–408 (2001). doi:10.1038/35086500 Medline
2. P. M. Sander, A. Christian, M. Clauss, R. Fechner, C. T. Gee, E. M. Griebeler, H. C. Gunga, J.
Hummel, H. Mallison, S. F. Perry, H. Preuschoft, O. W. Rauhut, K. Remes, T. Tütken, O.
Wings, U. Witzel, Biology of the sauropod dinosaurs: The evolution of gigantism. Biol.
Rev. Camb. Philos. Soc. 86, 117–155 (2011). doi:10.1111/j.1469-185X.2010.00137.x
Medline
3. R. A. Eagle, T. Tütken, T. S. Martin, A. K. Tripati, H. C. Fricke, M. Connely, R. L. Cifelli, J.
M. Eiler, Dinosaur body temperatures determined from isotopic (¹³C-¹⁸O) ordering in
fossil biominerals. Science 333, 443–445 (2011). doi:10.1126/science.1206196 Medline
4. J. H. Brown, J. F. Gillooly, A. P. Allen, V. M. Savage, G. B. West, Toward a metabolic theory
of ecology. Ecology 85, 1771–1789 (2004). doi:10.1890/03-9000
5. P. Else, A. Hulbert, Am. J. Physiol. Regul. Integr. Comp. Physiol. 240, R3–R9 (1981).
6. J. F. Gillooly, J. H. Brown, G. B. West, V. M. Savage, E. L. Charnov, Effects of size and
temperature on metabolic rate. Science 293, 2248–2251 (2001).
doi:10.1126/science.1061967 Medline
7. G. M. Erickson, K. C. Rogers, S. A. Yerby, Dinosaurian growth patterns and rapid avian
growth rates. Nature 412, 429–433 (2001). doi:10.1038/35086558 Medline
8. A. H. Lee, S. Werning, Sexual maturity in growing dinosaurs does not fit reptilian growth
models. Proc. Natl. Acad. Sci. U.S.A. 105, 582–587 (2008).
doi:10.1073/pnas.0708903105 Medline
9. See the supplementary materials.
10. F. Seebacher, Dinosaur body temperatures: The occurrence of endothermy and ectothermy.
Paleobiology 29, 105–122 (2003). doi:10.1666/00948373(2003)029<0105:DBTTOO>2.0.CO;2
11. R. H. Peters, The Ecological Implications of Body Size (Cambridge Univ. Press, Cambridge,
MA, 1983).
12. C. R. White, N. F. Phillips, R. S. Seymour, The scaling and temperature dependence of
vertebrate metabolism. Biol. Lett. 2, 125–127 (2006). doi:10.1098/rsbl.2005.0378
Medline
13. T. J. Case, On the evolution and adaptive significance of postnatal growth rates in the
terrestrial vertebrates. Q. Rev. Biol. 53, 243–282 (1978). doi:10.1086/410622 Medline
14. G. B. West, J. H. Brown, B. J. Enquist, A general model for ontogenetic growth. Nature 413,
628–631 (2001). doi:10.1038/35098076 Medline
15. C. Hou, W. Zuo, M. E. Moses, W. H. Woodruff, J. H. Brown, G. B. West, Energy uptake and
allocation during ontogeny. Science 322, 736–739 (2008). doi:10.1126/science.1162302
Medline
16. D. Bernal, K. A. Dickson, R. E. Shadwick, J. B. Graham, Review: Analysis of the
evolutionary convergence for high performance swimming in lamnid sharks and tunas.
Comp. Biochem. Physiol. A Mol. Integr. Physiol. 129, 695–726 (2001).
doi:10.1016/S1095-6433(01)00333-6 Medline
17. G. M. Erickson, O. W. Rauhut, Z. Zhou, A. H. Turner, B. D. Inouye, D. Hu, M. A. Norell,
Was dinosaurian physiology inherited by birds? Reconciling slow growth in
archaeopteryx. PLOS ONE 4, e7390 (2009). doi:10.1371/journal.pone.0007390 Medline
18. A. Chinsamy, Mesozoic Birds: Above the Heads of Dinosaurs (Univ. of California Press,
Berkeley, CA, 2002), pp. 421–431.
19. E. L. Charnov, D. Berrigan, Evol. Anthropol. 1, 191–194 (1993).
20. K. Isler, C. P. van Schaik, The Expensive Brain: A framework for explaining evolutionary
changes in brain size. J. Hum. Evol. 57, 392–400 (2009).
doi:10.1016/j.jhevol.2009.04.009 Medline
21. R. Reid, in The Complete Dinosaur, M. K. Brett-Surman, T. R. Holtz, J. O. Farlow, Eds.
(Indiana Univ. Press, Bloomington, IN, 2012), pp. 873–24.
22. F. V. Paladino, M. P. O’Connor, J. R. Spotila, Metabolism of leatherback turtles,
gigantothermy, and thermoregulation of dinosaurs. Nature 344, 858–860 (1990).
doi:10.1038/344858a0
23. F. Seebacher, G. C. Grigg, L. A. Beard, Crocodiles as dinosaurs: Behavioural
thermoregulation in very large ectotherms leads to high and stable body temperatures. J.
Exp. Biol. 202, 77–86 (1999). Medline
24. P. Brice, G. C. Grigg, L. A. Beard, J. A. Donovan, Patterns of activity and inactivity in
echidnas (Tachyglossus aculeatus) free-ranging in a hot dry climate: Correlates with
ambient temperature, time of day and season. Aust. J. Zool. 50, 461–475 (2002).
doi:10.1071/ZO01080
25. R. Refinetti, M. Menaker, The circadian rhythm of body temperature. Physiol. Behav. 51,
613–637 (1992). doi:10.1016/0031-9384(92)90188-8 Medline
26. T. Kubo, W. Sakamoto, O. Murata, H. Kumai, Whole-body heat transfer coefficient and
body temperature change of juvenile Pacific bluefin tuna Thunnus orientalis according to
growth. Fish. Sci. 74, 995–1004 (2008). doi:10.1111/j.1444-2906.2008.01617.x
27. P. H. Brice, Thermoregulation in monotremes: Riddles in a mosaic. Aust. J. Zool. 57, 255–
263 (2009). doi:10.1071/ZO09039
28. H. J. Harlow, D. Purwandana, T. S. Jessop, J. A. Phillips, Body temperature and
thermoregulation of Komodo dragons in the field. J. Therm. Biol. 35, 338–347 (2010).
doi:10.1016/j.jtherbio.2010.07.002
29. B. K. McNab, W. Auffenberg, The effect of large body size on the temperature regulation of
the Komodo dragon, Varanus komodoensis. Comp. Biochem. Physiol. A Comp. Physiol.
55, 345–350 (1976). doi:10.1016/0300-9629(76)90058-X Medline
30. S. H. Emery, Hematological comparisons of endothermic vs ectothermic elasmobranch
fishes. Copeia 1986, 700–705 (1986). doi:10.2307/1444952
2
31. M. Thums, M. Meekan, J. Stevens, S. Wilson, J. Polovina, Evidence for behavioural
thermoregulation by the world’s largest fish. J. R. Soc. Interface 10, 20120477 (2012).
doi:10.1098/rsif.2012.0477 Medline
32. Arizona-Software, GraphClick 3.0 (Arizona-Software, 2008).
33. R. Andrews, in Biology of the Reptilia C. Gans, F. H. Pough, Eds. (Academic Press, New
York, 1982), vol. 13, chap. Patterns of Growth in Reptiles, pp. 273–320.
34. R. C. Team, R 3.1.0 (http://cran.r-project.org) (R Foundation for Statistical Computing,
Vienna, Austria, 2012).
35. S. I. Inc., JMP 9.0.1 (SAS Institute, Cary, NC, 1989–2007).
36. C. Lockyer, in Mammals in the Seas, J. Clark, Ed. (Food and Agriculture Organization,
Rome, 1981), vol. 3, pp. 379–487.
37. S. A. L. M. Kooijman, Dynamic Energy Budget Theory for Metabolic Organisation
(Cambridge Univ. Press, Cambridge, 2010), chap. 1.
38. C. R. White, P. B. Frappell, S. L. Chown, An information-theoretic approach to evaluating
the size and temperature dependence of metabolic rate. Proc. Biol. Sci. 279, 3616–3621
(2012). doi:10.1098/rspb.2012.0884 Medline
39. T. V. Elzhov, K. M. Mullen, A.-N. Spiess, B. Bolker, minpack.Im: R interface to the
Levenberg-Marquardt nonlinear least-squares algotithm found in MINPACK, plus
support for bounds; http://CRAN.R-project.org/package=minpack.Im (2013).
40. C. Ritz, A.-N. Spiess, qpcR: An R package for sigmoidal model selection in quantitative realtime polymerase chain reaction analysis. Bioinformatics 24, 1549–1551 (2008).
doi:10.1093/bioinformatics/btn227 Medline
41. E. Paradis, J. Claude, K. Strimmer, APE: Analyses of phylogenetics and evolution in R
language. Bioinformatics 20, 289–290 (2004). doi:10.1093/bioinformatics/btg412
Medline
42. O. R. Bininda-Emonds, M. Cardillo, K. E. Jones, R. D. MacPhee, R. M. Beck, R. Grenyer, S.
A. Price, R. A. Vos, J. L. Gittleman, A. Purvis, The delayed rise of present-day
mammals. Nature 446, 507–512 (2007). doi:10.1038/nature05634 Medline
43. W. Jetz, G. H. Thomas, J. B. Joy, K. Hartmann, A. O. Mooers, The global diversity of birds
in space and time. Nature 491, 444–448 (2012). doi:10.1038/nature11631 Medline
44. R. A. Pyron, F. T. Burbrink, J. J. Wiens, A phylogeny and revised classification of Squamata,
including 4161 species of lizards and snakes. BMC Evol. Biol. 13, 93 (2013).
doi:10.1186/1471-2148-13-93 Medline
45. T. J. Near, R. I. Eytan, A. Dornburg, K. L. Kuhn, J. A. Moore, M. P. Davis, P. C.
Wainwright, M. Friedman, W. L. Smith, Resolution of ray-finned fish phylogeny and
timing of diversification. Proc. Natl. Acad. Sci. U.S.A. 109, 13698–13703 (2012).
doi:10.1073/pnas.1206625109 Medline
46. X. Vélez-Zuazo, I. Agnarsson, Shark tales: A molecular species-level phylogeny of sharks
(Selachimorpha, Chondrichthyes). Mol. Phylogenet. Evol. 58, 207–217 (2011).
doi:10.1016/j.ympev.2010.11.018 Medline
3
47. R. M. Sibly, C. C. Witt, N. A. Wright, C. Venditti, W. Jetz, J. H. Brown, Energetics,
lifestyle, and reproduction in birds. Proc. Natl. Acad. Sci. U.S.A. 109, 10937–10941
(2012). doi:10.1073/pnas.1206512109 Medline
48. P. Senter, A new look at the phylogeny of coelurosauria (Dlnosauria: Theropoda). J. Syst.
Palaeontology 5, 429–463 (2007). doi:10.1017/S1477201907002143
49. P. Upchurch, C. A. Hunn, D. B. Norman, An analysis of dinosaurian biogeography: Evidence
for the existence of vicariance and dispersal patterns caused by geological events. Proc.
R. Soc. London Ser. B 269, 613–621 (2002). doi:10.1098/rspb.2001.1921 Medline
50. M. A. Loewen, R. B. Irmis, J. J. Sertich, P. J. Currie, S. D. Sampson, Tyrant dinosaur
evolution tracks the rise and fall of Late Cretaceous oceans. PLOS ONE 8, e79420
(2013). doi:10.1371/journal.pone.0079420 Medline
51. J. Gatesy, R. H. Baker, C. Hayashi, Inconsistencies in arguments for the supertree approach:
Supermatrices versus supertrees of Crocodylia. Syst. Biol. 53, 342–355 (2004).
doi:10.1080/10635150490423971 Medline
52. A. Yates, in The Complete Dinosaur, M. K. Brett-Surman, T. R. Holtz, J. O. Farlow, Eds.
(Indiana Univ. Press, Bloomington, IN, 2012).
53. P. Upchurch, P. M. Barrett, P. Dodson, in The Dinosauria, D. Weishampel, P. Dodson, H.
Osmolska, Eds. (Univ. of California Press, Berkeley, CA, 2004), pp. 259–324.
54. A. M. Yates, The first complete skull of the Triassic dinosaur Melanorosaurus Haughton
(Sauropodomorpha: Anchisauria). Spec. Pap. Paleontology: Evol. Palaeobiol. of Early
Sauropodomorph Dinosaurs 77, 9–55 (2007).
55. M. E. Moses, C. Hou, W. H. Woodruff, G. B. West, J. C. Nekola, W. Zuo, J. H. Brown,
Revisiting a model of ontogenetic growth: Estimating model parameters from theory and
data. Am. Nat. 171, 632–645 (2008). doi:10.1086/587073 Medline
56. W. A. Calder, Size, Function, and Life History (Harvard Univ. Press, Cambridge, MA,
1984).
57. D. S. Glazier, Beyond the ‘3/4-power law’: Variation in the intra- and interspecific scaling of
metabolic rate in animals. Biol. Rev. Camb. Philos. Soc. 80, 611–662 (2005).
doi:10.1017/S1464793105006834 Medline
58. G. B. West, J. H. Brown, B. J. Enquist, The fourth dimension of life: Fractal geometry and
allometric scaling of organisms. Science 284, 1677–1679 (1999).
doi:10.1126/science.284.5420.1677 Medline
59. J. R. Banavar, M. E. Moses, J. H. Brown, J. Damuth, A. Rinaldo, R. M. Sibly, A. Maritan, A
general basis for quarter-power scaling in animals. Proc. Natl. Acad. Sci. U.S.A. 107,
15816–15820 (2010). doi:10.1073/pnas.1009974107 Medline
60. C. R. White, P. Cassey, T. M. Blackburn, Allometric exponents do not support a universal
metabolic allometry. Ecology 88, 315–323 (2007). doi:10.1890/05-1883 Medline
61. J. Spotila, P. Lommen, G. Bakken, D. Gates, A mathematical model for body temperatures of
large reptiles: Implications for dinosaur ecology. Am. Nat. 107, 391–404 (1973).
doi:10.1086/282842
4
62. G. Seber, C. Wild, Nonlinear Regression (Wiley-Interscience, Hoboken, NJ, 2003), pp. 325–
326.
63. W. Ricker, in Fish Physiology, W. Hoar, D. Randall, J. Brett, Eds. (Academic Press, New
York, 1979), vol. 8, pp. 677–743.
64. R. Alexander, A. Jayes, G. Maloiy, E. Wathuta, Allometry of the limb bones of mammals
from shrews (Sorex) to elephant (Loxodonta). J. Zool. 189, 305–314 (1979).
doi:10.1111/j.1469-7998.1979.tb03964.x
65. D. J. Varricchio, J. R. Moore, G. M. Erickson, M. A. Norell, F. D. Jackson, J. J. Borkowski,
Avian paternal care had dinosaur origin. Science 322, 1826–1828 (2008).
doi:10.1126/science.1163245 Medline
66. V. R. Dol’nik, [Allometry of egg mass, clutch size and total clutch mass in dinosaurs:
comparison with modern reptiles and birds]. Zhurnal Obshchei Biologii 62, 275–285
(2001). Medline
67. D. Deeming, G. Birchard, Allometry of egg and hatchling mass in birds and reptiles: Roles of
developmental maturity, eggshell structure and phylogeny. J. Zool. (London) 271, 78–87
(2007). doi:10.1111/j.1469-7998.2006.00219.x
68. C. M. Duarte, M. Alcaraz, To produce many small or few large eggs: A size-independent
reproductive tactic of fish. Oecologia 80, 401–404 (1989). doi:10.1007/BF00379043
69. J. B. Thorbjarnarson, Reproductive characteristics of the order Crocodylia. Herpetologica 52,
8–24 (1996).
70. N. P. Myhrvold, Revisiting the estimation of dinosaur growth rates. PLOS ONE 8, e81917
(2013). doi:10.1371/journal.pone.0081917 Medline
71. G. Erickson, T. Tumanova, Growth curve of Psittacosaurus mongoliensis Osborn
(Ceratopsia: Psittacosauridae) inferred from long bone histology. Zool. J. Linn. Soc. 130,
551–566 (2000). doi:10.1111/j.1096-3642.2000.tb02201.x
72. J. F. Anderson, A. Hall-Martin, D. Russell, Long-bone circumference and weight in
mammals, birds and dinosaurs. J. Zool. 207, 53–61 (1985). doi:10.1111/j.14697998.1985.tb04915.x
73. D. I. Warton, I. J. Wright, D. S. Falster, M. Westoby, Bivariate line-fitting methods for
allometry. Biol. Rev. Camb. Philos. Soc. 81, 259–291 (2006).
doi:10.1017/S1464793106007007 Medline
74. K. P. Sebens, The ecology of indeterminate growth in animals. Annu. Rev. Ecol. Syst. 18,
371–407 (1987). doi:10.1146/annurev.es.18.110187.002103
75. T. Lehman, H. Woodward, Modeling growth rates for sauropod dinosaurs. Paleobiology 34,
264–281 (2008). doi:10.1666/0094-8373(2008)034[0264:MGRFSD]2.0.CO;2
76. G. M. Erickson, P. J. Makovicky, P. J. Currie, M. A. Norell, S. A. Yerby, C. A. Brochu,
Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature
430, 772–775 (2004). doi:10.1038/nature02699 Medline
5
77. W. Rootes, R. Chabreck, V. Wright, B. Brown, T. Hess, Growth rates of American alligators
in estuarine and palustrine wetlands in Louisiana. Estuaries Coasts 14, 489–494 (1991).
doi:10.2307/1352272
78. M. W. Ferguson, in Biology of the Reptilia: Development A, C. Gans, F. Billett, P. Maderson,
Eds. (Wiley, Hoboken, NJ, 1985), vol. 14, chap. 5, pp. 329–491.
79. S. Gorzula, An ecological study of Caiman crocodilus crocodilus inhabiting savanna lagoons
in the Venezuelan Guayana. Oecologia 35, 21–34 (1978). doi:10.1007/BF00345539
80. W. Magnusson, T. M. Sanaiotti, Growth of Caiman crocodilus crocodilus in central
Amazonia, Brazil. Copeia 1995, 498–501 (1995). doi:10.2307/1446922
81. R. E. Gatten Jr., Metabolic rates of fasting and recently fed spectacled caimans (Caiman
crocodilus). Herpetologica 36, 361–364 (1980).
82. C. Diefenbach, Thermal preferences and thermoregulation in Caiman crocodilus. Copeia
1975, 530–540 (1975). doi:10.2307/1443654
83. T. Moulton, W. Magnusson, M. Melo, Growth of Caiman latirostris inhabiting a coastal
environment in Brazil. J. Herpetol. 33, 479–484 (1999). doi:10.2307/1565647
84. G. Erickson, C. Brochu, How the terror crocodile grew so big. Nature 398, 205–206 (1999).
doi:10.1038/18343
85. J. Hutton, Morphometrics and field estimation of the size of the Nile crocodile. Afr. J. Ecol.
25, 225–230 (1987). doi:10.1111/j.1365-2028.1987.tb01113.x
86. A. D. Tucker, C. J. Limpus, K. R. McDonald, H. I. McCallum, Growth dynamics of
freshwater crocodiles (Crocodylus johnstoni) in the Lynd River, Queensland. Aust. J.
Zool. 54, 409–415 (2007). doi:10.1071/ZO06099
87. J. Hutton, Growth and feeding ecology of the Nile crocodile Crocodylus niloticus at Ngezi,
Zimbabwe. J. Anim. Ecol. 56, 25–38 (1987). doi:10.2307/4797
88. L. Montes, N. Le Roy, M. Perret, V. De Buffrenil, J. Castanet, J. Cubo, Relationships
between bone growth rate, body mass and resting metabolic rate in growing amniotes: A
phylogenetic approach. Biol. J. Linn. Soc. Lond. 92, 63–76 (2007). doi:10.1111/j.10958312.2007.00881.x
89. G. Webb, H. Messel, J. Crawford, M. Yerbury, Growth rates of Crocodylus Porosus
(Reptilia: Crocodilia) from Arnhem Land, Northern Australia. Wildl. Res. 5, 385–399
(1978). doi:10.1071/WR9780385
90. G. C. Grigg, Metabolic rate, Q10 and respiratory quotient (RQ) in Crocodylus porosus, and
some generalizations about low RQ in reptiles. Physiol. Zool. 51, 354–360 (1978).
91. T. R. Hübner, Bone histology in Dysalotosaurus lettowvorbecki (Ornithischia:
Iguanodontia)—variation, growth, and implications. PLOS ONE 7, e29958 (2012).
doi:10.1371/journal.pone.0029958 Medline
92. E. M. Griebeler, N. Klein, P. M. Sander, Aging, maturation and growth of Sauropodomorph
dinosaurs as deduced from growth curves using long bone histological data: An
assessment of methodological constraints and solutions. PLOS ONE 8, e67012 (2013).
doi:10.1371/journal.pone.0067012 Medline
6
93. L. Rinehart, S. Lucas, J. Heckert, M. Celeskey, Growth, allometry and population dynamics.
N. M. Museum Nat. Hist. Sci. Bull. 45, 100–116 (2009).
94. G. M. Erickson, K. Curry Rogers, D. J. Varricchio, M. A. Norell, X. Xu, Growth patterns in
brooding dinosaurs reveals the timing of sexual maturity in non-avian dinosaurs and
genesis of the avian condition. Biol. Lett. 3, 558–561 (2007). doi:10.1098/rsbl.2007.0254
Medline
95. T. Lehman, in Horns and Beaks: Ceratopsian and Ornithopod Dinosaurs, K. Carpenter, Ed.
(Indiana Univ. Press, Bloomington, IN, 2006), pp. 259–317.
96. L. L. Marker, A. J. Dickman, Morphology, physical condition, and growth of the cheetah
(Acinonyx jubatus jubatus). J. Mammal. 84, 840–850 (2003). doi:10.1644/BRB-036
97. V. M. Savage, J. Gillooly, W. Woodruff, G. West, A. Allen, B. Enquist, J. Brown, The
predominance of quarter-power scaling in biology. Funct. Ecol. 18, 257–282 (2004).
doi:10.1111/j.0269-8463.2004.00856.x
98. S. K. M. Ernest, Life history characteristics of placental nonvolant mammals. Ecology 84,
3402–3402 (2003). doi:10.1890/02-9002
99. A. Trites, M. Bigg, Physical growth of northern fur seals (Callorhinus ursinus): Seasonal
fluctuations and migratory influences. J. Zool. (London) 238, 459–482 (1996).
doi:10.1111/j.1469-7998.1996.tb05406.x
100. L. D. Mech, Age-related body mass and reproductive measurements of gray wolves in
Minnesota. J. Mammal. 87, 80–84 (2006). doi:10.1644/05-MAMM-F-212R1.1
101. J. Grobler, Growth of a male caracal kitten Felis caracal in the Mountain Zebra National
Park. Koedoe-African Protected Area Conservation and Science 25, 117–119 (1982).
doi:10.4102/koedoe.v25i1.611
102. J. W. Laundre, L. Hernandez, Growth curve models and age estimation of young cougars in
the northern Great Basin. J. Wildl. Manage. 66, 849–858 (2002). doi:10.2307/3803149
103. D. M. Crowe, Aspects of aging, growth, and reproduciton of bobcats from Wyoming. J.
Mammal. 56, 177–198 (1975). doi:10.2307/1379615 Medline
104. A. Vargas, S. H. Anderson, Growth and physical development of captive-raised blackfooted ferrets (Mustela nigripes). Am. Midl. Nat. 135, 43–52 (1996).
doi:10.2307/2426870
105. G. A. Heidt, M. K. Petersen, G. L. Kirkland Jr., Mating behavior and development of least
weasels (Mustela nivalis) in captivity. J. Mammal. 49, 413–419 (1968).
doi:10.2307/1378199 Medline
106. J. Fox, Biology and Diseases of the Ferret (Wiley-Blackwell, Hoboken, NJ, 1998).
107. G. Smuts, G. Robinson, I. Whyte, Comparative growth of wild male and female lions
(Panthera leo). J. Zool. 190, 365–373 (1980). doi:10.1111/j.1469-7998.1980.tb01433.x
108. V. Mazák, Der Tiger: Panthera tigris (A. Ziemsen Verlag, Wittenberg Lutherstadt,
Germany, 1979).
7
109. J. E. Swenson, M. Adamic, D. Huber, S. Stokke, Brown bear body mass and growth in
northern and southern Europe. Oecologia 153, 37–47 (2007). doi:10.1007/s00442-0070715-1 Medline
110. P. Prestrud, K. Nilssen, P. Prestrud, Growth, size, and sexual dimorphism in arctic foxes. J.
Mammal. 76, 522–530 (1995). doi:10.2307/1382360
111. S. Brown, C. Lockyer, in Antarctic Ecology, R. Laws, Ed. (Academic Press, New York,
1984), pp. 717–781.
112. I. Boyd, in Marine Mammal Biology: An Evolutionary Approach, A. Hoelzel, Ed.
(Blackwell Science, Malden, MA, 2002), pp. 247–277.
113. H. Omura, Further information on Bryde's whale from the coast of Japan. Sci. Rep. Whales
Res. Inst. 16, 7–18 (1962).
114. C. Lockyer, Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273
(1976). doi:10.1093/icesjms/36.3.259
115. J. L. Sumich, Growth in young gray whales (Eschrichtius robustus). Mar. Mamm. Sci. 2,
145–152 (1986). doi:10.1111/j.1748-7692.1986.tb00035.x
116. P. Brodie, A reconsideration of aspects of growth, reproduction, and behavior of the white
whale (Delphinapterus leucas), with reference to the Cumberland Sound, Baffin Island,
population. J. Fisheries Board Can. 28, 1309–1318 (1971). doi:10.1139/f71-198
117. D. Sergeant, P. Brodie, Body size in white whales, Delphinapterus leucas. J. Fisheries
Board Can. 26, 2561–2580 (1969). doi:10.1139/f69-251
118. K. Danil, S. Chivers, Growth and reproduction of female short-beaked common dolphins,
Delphinus delphis, in the eastern tropical Pacific. Can. J. Zool. 85, 108–121 (2007).
doi:10.1139/z06-188
119. T. A. Jefferson, Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong
waters. Wildl. Monogr. 144, 1–65 (2000).
120. D. Bloch, C. Lockyer, M. Zachariassen, Age and growth parameters of the long-finned pilot
whale off the Faroe Islands. Rep. Int. Whal. Comm. Spec. Issue 14, 163–207 (1993).
121. E. Garde, M. Heide-Jorgensen, S. Hansen, G. Nachman, M. Forchhammer, Age-specific
growth and remarkable longevity in narwhals (Monodon monoceros) from West
Greenland as estimated by aspartic acid racemization. J. Mammal. 88, 49–58 (2007).
doi:10.1644/06-MAMM-A-056R.1
122. I. Christensen, W. Perrin, R. Brownell, I. Demaster, Growth and reproduction of killer
whales, Orcinus orca, in Norwegian coastal waters. Rep. Int. Whal. Comm. Spec. Issue 6,
253–258 (1984).
123. S. T. Clark, D. K. Odell, C. T. Lacinak, Aspects of growth in captive killer whales (Orcinus
orca). Mar. Mamm. Sci. 16, 110–123 (2000). doi:10.1111/j.1748-7692.2000.tb00907.x
124. K. Evans, M. Hindell, The age structure and growth of female sperm whales (Physeter
macrocephalus) in southern Australian waters. J. Zool. (London) 263, 237–250 (2004).
doi:10.1017/S0952836904005096
8
125. R. Ramos, A. Di Beneditto, N. Lima, Growth parameters of Pontoporia blainvillei and
Sotalia fluviatilis (Cetacea) in northern Rio de Janeiro, Brazil. Aquat. Mamm. 26, 65–75
(2000).
126. S. Botta, M. M. C. Muelbert, E. R. Secchi, Morphometric relationships of franciscana
dolphin, Pontoporia blainvillei (Cetacea), off Rio Grande do Sul coast, southern Brazil.
Lat. Am. J. Aquat. Mamm. (LAJAM) 5, 117–123 (2006). doi:10.5597/lajam00102
127. I. Ferreira, thesis, Univ. of Pretoria, Pretoria, South Africa (2008).
128. A. A. Hohn, P. Hammond, Early postnatal growth of the spotted dolphin, Stenella
attenuata, in the offshore eastern tropical Pacific. Fish Bull. 83, 553–566 (1884).
129. W. Perrin, D. Holts, R. Miller, Growth and reproduction of the eastern spinner dolphin, a
geographical form of Stenella longirostris in the eastern tropical Pacific. Fish Bull. 75,
725–750 (1977).
130. A. Read, R. Wells, A. Hohn, M. Scott, Patterns of growth in wild bottlenose dolphins,
Tursiops truncatus. J. Zool. (London) 231, 107–123 (1993). doi:10.1111/j.14697998.1993.tb05356.x
131. A. E. Vinogradov, Nucleotypic effect in homeotherms: body-mass-corrected basal
metabolic rate of mammals is related to genome size. Evolution 49, 1249–1259 (1995).
doi:10.2307/2410449
132. P. Jarman, Mating system and sexual dimorphism in large, terrestrial, mammalian
herbivores. Biol. Rev. Camb. Philos. Soc. 58, 485–520 (1983). doi:10.1111/j.1469185X.1983.tb00398.x
133. A. W. Franzmann, R. E. LeResche, R. A. Rausch, J. L. Oldemeyer, Alaskan moose
measurements and weights and measurement-weight relationships. Can. J. Zool. 56, 298–
306 (1978). doi:10.1139/z78-040
134. W. C. Green, A. Rothstein, Trade-offs between growth and reproduction in female bison.
Oecologia 86, 521–527 (1991). doi:10.1007/BF00318318
135. M. Krasińska, Z. Krasiński, Body mass and measurements of the European bison during
postnatal development. Acta Theriol. (Warsz.) 47, 85–106 (2002).
doi:10.1007/BF03193569
136. L. Dobroruka, J. Vahala, J. Ded, Breeding and development of White-tailed gnu:
Connochaetes gnou at Dvur Kralove Zoo. Int. Zoo Yearb. 29, 197–201 (1990).
doi:10.1111/j.1748-1090.1990.tb03352.x
137. W. Robinette, A. Archer, Notes on ageing criteria and reproduction of Thomson's gazelle.
Afr. J. Ecol. 9, 83–98 (1971). doi:10.1111/j.1365-2028.1971.tb00222.x
138. R. Laws, Dentition and ageing of the hippopotamus. Afr. J. Ecol. 6, 19–52 (1968).
doi:10.1111/j.1365-2028.1968.tb00899.x
139. R. B. Martin, Transboundary Mammal Project: Background Study, Hippopotamus
(Ministry of Environment and Tourism, Namibia, Africa; faciliated by the Namibia
Nature Foundation, 2005);
www.nnf.org.na/RARESPECIES/rare_library/documents/Hippo.pdf.
9
140. J. Grobler, Body growth and age determination of the Sable Hippotragus niger niger
(Harris, 1838). Koedoe 23, 131–156 (1980). doi:10.4102/koedoe.v23i1.641
141. W. L. Robinette, C. H. Baer, R. E. Pillmore, C. E. Knittle, Effects of nutritional change on
captive mule deer. J. Wildl. Manage. 37, 312–326 (1973). doi:10.2307/3800121
142. K. L. Monteith, L. E. Schmitz, J. A. Jenks, J. A. Delger, R. T. Bowyer, Growth of male
white-tailed deer: Consequences of maternal effects. J. Mammal. 90, 651–660 (2009).
doi:10.1644/08-MAMM-A-191R1.1
143. S. Czernay, Zur Haltung und Zucht von Südpudus (Pudu pudu Molina 1782) im Thüringer
Zoopark Erfurt. Zool. Garten N.F. Jena 47, 226–240 (1977).
144. N. Leader-Williams, C. Ricketts, Seasonal and sexual patterns of growth and condition of
reindeer introduced into South Georgia. Oikos 38, 27–39 (1982). doi:10.2307/3544564
145. F. Spitz, G. Valet, I. L. Brisbin Jr., Variation in body mass of wild boars from southern
France. J. Mammal. 79, 251–259 (1998). doi:10.2307/1382861
146. U. Pienaar, Observations on developmental biology, growth and some aspects of the
population ecology of African buffalo (Syncerus caffer caffer Sparrman) in the Kruger
National Park. Koedoe 12, 29–52 (1969). doi:10.4102/koedoe.v12i1.745
147. G. Chaverri, T. H. Kunz, Reproductive biology and postnatal development in the tentmaking bat Artibeus watsoni (Chiroptera: Phyllostomidae). J. Zool. (London) 270, 650–
656 (2006). doi:10.1111/j.1469-7998.2006.00171.x
148. W. R. Hood, J. Bloss, T. H. Kunz, Intrinsic and extrinsic sources of variation in size at birth
and rates of postnatal growth in the big brown bat Eptesicus fuscus (Chiroptera:
Vespertilionidae). J. Zool. (London) 258, 355–363 (2002).
doi:10.1017/S0952836902001504
149. A.-Q. Lin, L.-R. Jin, Y. Liu, K.-P. Sun, J. Feng, Postnatal growth and age estimation in
Horsfield's leaf-nosed bat Hipposideros larvatus. Zool. Stud. 49, 789–796 (2010).
150. H. Cheng, L. Lee, Postnatal growth, age estimation, and sexual maturity in the Formosan
leaf-nosed bat (Hipposideros terasensis). J. Mammal. 83, 785–793 (2002).
doi:10.1644/1545-1542(2002)083<0785:PGAEAS>2.0.CO;2
151. J. W. Bradbury, Lek mating behavior in the hammer-headed bat. Z. Tierpsychol. 45, 225–
255 (1977). doi:10.1111/j.1439-0310.1977.tb02120.x
152. M. Sharifi, Postnatal growth in Myotis blythii (Chiroptera, Vespertilionidae). Mammalia 68,
283–290 (2004). doi:10.1515/mamm.2004.027
153. T. L. Baptista, C. S. Richardson, T. H. Kunz, Postnatal growth and age estimation in freeranging bats: A comparison of longitudinal and cross-sectional sampling methods. J.
Mammal. 81, 709–718 (2000). doi:10.1644/15451542(2000)081<0709:PGAAEI>2.3.CO;2
154. Y. Liu, L.-R. Jin, W. Metzner, J. Feng, Postnatal growth and age estimation in big-footed
myotis, Myotis macrodactylus. Acta Chiropt. 11, 105–111 (2009).
doi:10.3161/150811009X465721
10
155. A. A. Stern, T. H. Kunz, Intraspecific variation in postnatal growth in the greater spearnosed bat. J. Mammal. 79, 755–763 (1998). doi:10.2307/1383086
156. K. Hoying, T. Kunz, Variation in size at birth and post-natal growth in the insectivorous bat
Pipistrellus subflavus (Chiroptera: Vespertilionidae). J. Zool. (London) 245, 15–27
(1998). doi:10.1111/j.1469-7998.1998.tb00067.x
157. J. McLean, J. Speakman, Morphological changes during postnatal growth and reproduction
in the brown long-eared bat Plecotus auritus: Implications for wing loading and predicted
flight performance. J. Nat. Hist. 34, 773–791 (2000). doi:10.1080/002229300299417
158. E. N. Smith, Husbandry Manual for SFfox Pteropus conspicillatus (Mammalia:
Pteropodidae) (Western Sydney Institute of TAFE, Richmond College, Richmond,
Australia, 2006).
159. M. Griffith, Husbandry Manual for Grey-HFflying Fox Pteropus poliocephalus (Mammlia:
Pteropodidae) (Sydney Institute of TAFE, Ultimo, Australia, 2004).
160. T. H. Kunz, A. Kurta, Symp. Zool. Soc. London 57, 79–106 (1987).
161. K. Funakoshi, E. Nomura, M. Matsukubo, Y. Wakita, Postnatal growth and vocalization
development of the lesser horseshoe bat, Rhinolophus cornutus, in the Kyushu district,
Japan. Mammal Study 35, 65–78 (2010). doi:10.3106/041.035.0105
162. G. Reiter, Postnatal growth and reproductive biology of Rhinolophus hipposideros
(Chiroptera: Rhinolophidae). J. Zool. (London) 262, 231–241 (2004).
doi:10.1017/S0952836903004588
163. V. Elangovan, H. Raghuram, E. Y. Satya Priya, G. Marimuthu, Postnatal growth, age
estimation and development of foraging behaviour in the fulvous fruit bat Rousettus
leschenaulti. J. Biosci. (Bangalore) 27, 695–702 (2002). doi:10.1007/BF02708378
Medline
164. M. Roberts, L. Newman, G. Peterson, The management and reproduction of the large hairy
armadillo at the National Zoological Park. Int. Zoo Yearb. 22, 185–194 (1982).
doi:10.1111/j.1748-1090.1982.tb02032.x
165. H. L. Anderson, P. C. Lent, Reproduction and growth of the tundra hare (Lepus othus). J.
Mammal. 58, 53–57 (1977). doi:10.2307/1379727 Medline
166. P. L. Altman, D. D. Katz, Growth Including Reproduction and Morphological Development
(Biological Handbooks, Federation of American Societies for Experimental Biology,
Washington, DC, 1962).
167. O. J. Rongstad, A cottontail rabbit lens-growth curve from Southern Wisconsin. J. Wildl.
Manage. 30, 114–121 (1966). doi:10.2307/3797890
168. C. Conaway, Maintenance, reproduction and growth of the least shrew in captivity. J.
Mammal. 39, 507–512 (1958). doi:10.2307/1376787
169. I. Michalak, Keeping and breeding the Eurasian water shrew Neomys fodiens under
laboratory conditions. Int. Zoo Yearb. 26, 223–228 (1987). doi:10.1111/j.17481090.1987.tb03163.x
11
170. D. J. Forsyth, A field study of growth and development of nestling masked shrews (Sorex
cinereus). J. Mammal. 57, 708–721 (1976). doi:10.2307/1379441 Medline
171. R. Gusztak, K. Campbell, Growth, development and maintenance of American water
shrews (Sorex palustris) in captivity. Mammal Study 29, 65–72 (2004).
doi:10.3106/mammalstudy.29.65
172. V. Nesterenko, S. D. Ohdachi, Postnatal growth and development in Sorex unguiculatus.
Mammal Study 26, 145–148 (2001). doi:10.3106/mammalstudy.26.145
173. A. Ishikawa, T. Namikawa, Postnatal growth and development in laboratory strains of large
and small musk shrews (Suncus murinus). J. Mammal. 68, 766–774 (1987).
doi:10.2307/1381553
174. G. Olbricht, thesis, Univ. of Duisburg-Essen, Duisburg-Essen, Germany (2009).
175. A. Hillman-Smith, N. Owen-Smith, J. Anderson, A. Hall-Martin, J. Selaladi, Age
estimation of the white rhinoceros (Ceratotherium simum). J. Zool. 210, 355–377 (1986).
doi:10.1111/j.1469-7998.1986.tb03639.x
176. D. Purchase, Using spoor to determine the age and weight of subadult black rhinoceroses
(Diceros bicornis L.). S. Afr. J. Wildl. Res 37, 96–100 (2007). doi:10.3957/0379-436937.1.96
177. W. R. Allen, S. Wilsher, C. Tiplady, R. M. Butterfield, The influence of maternal size on
pre- and postnatal growth in the horse: III Postnatal growth. Reproduction 127, 67–77
(2004). doi:10.1530/rep.1.00024 Medline
178. G. Smuts, Pre-and postnatal growth phenomena of Burchell's Zebra Equus burchelli
antiquorum. Koedoe 18, 69–102 (1975). doi:10.4102/koedoe.v18i1.915
179. S. Zschokke, B. Baur, Inbreeding, outbreeding, infant growth, and size dimorphism in
captive Indian rhinoceros (Rhinoceros unicornis). Can. J. Zool. 80, 2014–2023 (2002).
doi:10.1139/z02-183
180. S. R. Leigh, Patterns of variation in the ontogeny of primate body size dimorphism. J. Hum.
Evol. 23, 27–50 (1992). doi:10.1016/0047-2484(92)90042-8
181. P. A. Garber, S. R. Leigh, Ontogenetic variation in small-bodied New World primates:
Implications for patterns of reproduction and infant care. Folia Primatol. (Basel) 68, 1–
22 (1997). doi:10.1159/000157226 Medline
182. A. Hiyaoka, T. Yoshida, F. Cho, N. Goto, [Growth curves of body weight changes in
laboratory-bred female African green monkeys (Cercopithecus aethiops)]. Exp. Anim. 38,
239–244 (1989). Medline
183. A. Gijzen, J. Tijskens, Growth in weight of the lowland gorilla and of the mountain gorilla.
Int. Zoo Yearb. 11, 183–193 (1971). doi:10.1111/j.1748-1090.1971.tb01899.x
184. B. L. Deputte, Life history of captive gray-cheeked mangabeys: Physical and sexual
development. Int. J. Primatol. 13, 509–531 (1992). doi:10.1007/BF02547830
185. A. Mori, Analysis of population changes by measurement of body weight in the Koshima
troop of Japanese monkeys. Primates 20, 371–397 (1979). doi:10.1007/BF02373390
12
186. G. van Wagenen, H. R. Catchpole, Physical growth of the Rhesus monkey (Macaca
mulatta). Am. J. Phys. Anthropol. 14, 245–273 (1956). doi:10.1002/ajpa.1330140219
Medline
187. R. Chaffee, J. Allen, Effects of ambient temperature on the resting metabolic rate of coldand heat- acclimated Macaca mulutta. Comp. Biochem. Physiol. 44A, 1215–1225 (1973).
doi:10.1016/0300-9629(73)90260-0
188. Y. Hamada, T. Udono, M. Teramoto, T. Sugawara, The growth pattern of chimpanzees:
Somatic growth and reproductive maturation in Pan troglodytes. Primates 37, 279–295
(1996). doi:10.1007/BF02381860
189. K. E. Jones, J. Bielby, M. Cardillo, S. A. Fritz, J. O'Dell, C. D. L. Orme, K. Safi, W.
Sechrest, E. H. Boakes, C. Carbone, PanTHERIA: A species-level database of life
history, ecology, and geography of extant and recently extinct mammals: Ecological
Archives E090-184. Ecology 90, 2648–2648 (2009).
190. L. M. Ausman, K. M. Rasmussen, D. L. Gallina, Spontaneous obesity in maturing squirrel
monkeys fed semipurified diets. Am. J. Physiol. 241, R316–R321 (1981). Medline
191. M. Roberts, Growth, development, and parental care in the western tarsier (Tarsius
bancanus) in captivity: Evidence for a “slow” life-history and nonmonogamous mating
system. Int. J. Primatol. 15, 1–28 (1994). doi:10.1007/BF02735232
192. S. R. Leigh, C. J. Terranova, Comparative perspectives on bimaturism, ontogeny, and
dimorphism in lemurid primates. Int. J. Primatol. 19, 723–749 (1998).
doi:10.1023/A:1020381026848
193. D. T. Rasmussen, M. K. Izard, Scaling of growth and life history traits relative to body size,
brain size, and metabolic rate in lorises and galagos (Lorisidae, primates). Am. J. Phys.
Anthropol. 75, 357–367 (1988). doi:10.1002/ajpa.1330750307 Medline
194. A. R. Glatston, The husbandry, breeding and hand-rearing of the lesser mouse lemur at
Rotterdam Zoo. Int. Zoo Yearb. 21, 131–137 (1981). doi:10.1111/j.17481090.1981.tb01966.x
195. M. Perret, Energetic advantage of nest-sharing in a solitary primate, the lesser mouse lemur
(Microcebus murinus). J. Mammal. 79, 1093–1102 (1998). doi:10.2307/1383001
196. M. J. Ravosa, D. M. Meyers, K. E. Glander, Relative growth of the limbs and trunk in
sifakas: Heterochronic, ecological, and functional considerations. Am. J. Phys. Anthropol.
92, 499–520 (1993). doi:10.1002/ajpa.1330920408 Medline
197. R. Sukumar, The Asian Elephant: Ecology and Management (Cambridge Univ. Press,
Cambridge, 1993).
198. J. Hanks, Growth of the African elephant (Loxodonta africana). Afr. J. Ecol. 10, 251–272
(1972). doi:10.1111/j.1365-2028.1972.tb00870.x
199. A. Waldschmidt, E. F. Müller, A comparison of postnatal thermal physiology and
energetics in an altricial (Gerbillus perpallidus) and a precocial (Acomys cahirinus)
rodent species. Comp. Biochem. Physiol. A Comp. Physiol. 90, 169–181 (1988).
doi:10.1016/0300-9629(88)91024-9 Medline
13
200. V. De Conto, R. Cerqueira, Reproduction, development and growth of Akodon lindberghi
(Hershkovitz, 1990) (Rodentia, Muridae, Sigmodontinae) raised in captivity. Braz. J.
Biol. 67, 707–713 (2007). doi:10.1590/S1519-69842007000400017 Medline
201. L.-K. Lin, T. Nishino, S. Shiraishi, Postnatal growth and development of the Formosan
wood mouse Apodemus semotus. J. Mammal. Soc. Jpn. 18, 1–18 (1993).
202. M. Delany, R. Monro, Growth and development of wild and captive Nile rats, Arvicanthis
niloticus (Rodentia: Muridae). Afr. J. Ecol. 23, 121–131 (1985). doi:10.1111/j.13652028.1985.tb00720.x
203. S. Camín, Gestation, maternal behaviour, growth and development in the subterranean
caviomorph rodent Ctenomys mendocinus (Rodentia, Hystricognathi, Ctenomyidae).
Anim. Biol. 60, 79–95 (2010). doi:10.1163/157075610X12610595764255
204. J. A. Lackey, Growth and development of Dipodomys stephensi. J. Mammal. 48, 624–632
(1967). doi:10.2307/1377586 Medline
205. M. A. Mares, Reproduction, growth, and development in Argentine gerbil mice,
Eligmodontia typus. J. Mammal. 69, 852–854 (1988). doi:10.2307/1381647
206. S. Viljoen, S. Du Toit, Postnatal development and growth of southern African tree squirrels
in the genera Funisciurus and Paraxerus. J. Mammal. 66, 119–127 (1985).
doi:10.2307/1380963
207. R. B. Tesh, Notes on the reproduction, growth, and development of echimyid rodents in
Panama. J. Mammal. 51, 199–202 (1970). doi:10.2307/1378568
208. T. P. Jackson, R. J. van Aarde, Sex-and species-specific growth patterns in cryptic African
rodents, Mastomys natalensis and M. coucha. J. Mammal. 84, 851–860 (2003).
doi:10.1644/BPR-001
209. R. Fernández-Salvador, R. García-Perea, J. Ventura, Reproduction and postnatal growth of
the Cabrera vole, Microtus cabrerae, in captivity. Can. J. Zool. 79, 2080–2085 (2001).
doi:10.1139/z01-175
210. R. J. Martin, Growth curves for bushy-tailed woodrats based upon animals raised in the
wild. J. Mammal. 54, 517–518 (1973). doi:10.2307/1379144 Medline
211. N. Pillay, Reproduction and postnatal development in the bush Karoo rat Otomys
unisulcatus (Muridae, Otomyinae). J. Zool. (London) 254, 515–520 (2001).
doi:10.1017/S0952836901001017
212. L. R. Brand, R. E. Ryckman, Laboratory life histories of Peromyscus eremicus and
Peromyscus interparietalis. J. Mammal. 49, 495–501 (1968). doi:10.2307/1378208
Medline
213. E. M. Derrickson, Patterns of postnatal growth in a laboratory colony of Peromyscus
leucopus. J. Mammal. 69, 57–66 (1988). doi:10.2307/1381747
214. A. Svihla, Development and growth of the prairie deermouse, Peromyscus maniculatus
bairdii. J. Mammal. 16, 109–115 (1935). doi:10.2307/1374355
14
215. E. T. Hooper, M. D. Carleton, Reproduction, growth and development in two contiguously
allopatric rodent species, genus Scotinomys. Miscell. Publ., Mus. Zool.Univ. Mich. 151,
35–43 (1976).
216. J. Koeppl, R. Hoffmann, Comparative postnatal growth of four ground squirrel species. J.
Mammal. 62, 41–57 (1981). doi:10.2307/1380476
217. P. M. Collins, W. N. Tsang, Growth and reproductive development in the male tree shrew
(Tupaia belangeri) from birth to sexual maturity. Biol. Reprod. 37, 261–267 (1987).
doi:10.1095/biolreprod37.2.261 Medline
218. B. Marlow, Reproductive behaviour of the marsupial mouse, Antechinus flavipes
(Waterhouse) (Marsupialia) and the development of the pouch young. Aust. J. Zool. 9,
203–218 (1961). doi:10.1071/ZO9610203
219. E. M. Russell, Patterns of parental care and parental investment in marsupials. Biol. Rev.
Camb. Philos. Soc. 57, 423–486 (1982). doi:10.1111/j.1469-185X.1982.tb00704.x
Medline
220. W. Westman, G. Körtner, F. Geiser, Developmental thermoenergetics of the dasyurid
marsupial, Antechinus stuartii. J. Mammal. 83, 81–90 (2002). doi:10.1644/15451542(2002)083<0081:DTOTDM>2.0.CO;2
221. G. A. Petrides, Sex and age determination in the opossum. J. Mammal. 30, 364–378, illust
(1949). doi:10.2307/1375212 Medline
222. C. Tyndale-Biscoe, Reproduction and post-natal development in the marsupial Bettongia
lesueur (Quoy & Gaimard). Aust. J. Zool. 16, 577–602 (1968). doi:10.1071/ZO9680577
223. G. Maynes, Growth of the parma wallaby, Macropus parma Waterhouse. Aust. J. Zool. 24,
217–236 (1976). doi:10.1071/ZO9760217
224. M. J. Hamilton, A. D. Davidson, R. M. Sibly, J. H. Brown, Universal scaling of production
rates across mammalian lineages. Proc. Biol. Sci. 278, 560–566 (2011).
doi:10.1098/rspb.2010.1056 Medline
225. M. Smith, Observations on growth of Petaurus breviceps and P. norfolcensis (Petauridae:
Marsupialia) in captivity. Aust. Wildl. Res. 6, 141–150 (1979). doi:10.1071/WR9790141
226. J. Tobey, C. Andrus, L. Doyle, V. Thompson, F. Bercovitch, Maternal effort and joey
growth in koalas (Phascolarctos cinereus). J. Zool. (London) 268, 423–431 (2006).
doi:10.1111/j.1469-7998.2005.00041.x
227. S. A. Munks, B. Green, Milk consumption and growth in a marsupial arboreal folivore, the
common ringtail possum, Pseudocheirus peregrinus. Physiol. Zool. 70, 691–700 (1997).
doi:10.1086/515871 Medline
228. R. Rose, D. McCatney, Growth of the red-bellied pademelon Thylogale billardierii, and age
estimation of pouch young. Aust. Wildl. Res. 9, 33–38 (1982). doi:10.1071/WR9820033
229. R. How, Reproduction, growth and survival of young in the mountain possum, Trichosurus
caninus (Marsupialia). Aust. J. Zool. 24, 189–199 (1976). doi:10.1071/ZO9760189
230. A. G. Lyne, A. M. Verhagen, Growth of the marsupial Trichosurus vulpecula and a
comparison with some higher mammals. Growth 21, 167–195 (1957). Medline
15
231. M. Mackerras, R. Smith, Breeding the short-nosed marsupial bandicoot Isoodon macrouras
(Gould), in captivity. Aust. J. Zool. 8, 371–382 (1960). doi:10.1071/ZO9600371
232. G. E. Heinsohn, Ecology and reproduction of the Tasmanian bandicoots (Perameles gunnii
and Isoodon obesulus). Univ. Calif. Publ. Zool. 80, 1–96 (1966).
233. E. Furlan, J. Griffiths, N. Gust, R. Armistead, P. Mitrovski, K. Handasyde, M. Serena, A.
Hoffmann, A. Weeks, Is body size variation in the platypus (Ornithorhynchus anatinus)
associated with environmental variables? Aust. J. Zool. 59, 201–215 (2012).
doi:10.1071/ZO11056
234. S. Jackson, L. Fisk, N. Holland, M. Serena, D. Middleton, Platypus (Ornithorhnychus
anatinus): Captive husbandry guidelines; www.australasianzookeeping.org (2004–2011).
235. S. Nicol, N. Andersen, The life history of an egg-laying mammal, the echidna
(Tachyglossus aculeatus). Ecoscience 14, 275–285 (2007). doi:10.2980/11956860(2007)14[275:TLHOAE]2.0.CO;2
236. R. L. Bruggers, W. B. Jackson, Morphological and behavioral development of the mandarin
duck. Auk 94, 608–612 (1977).
237. K. J. Reinecke, Feeding ecology and development of juvenile black ducks in Maine. Auk
96, 737–745 (1979).
238. J. P. Lightbody, C. D. Ankney, Seasonal influence on the strategies of growth and
development of Canvasback and Lesser Scaup ducklings. Auk 101, 121–133 (1984).
239. J. S. Sedinger, Growth and development of Canada goose goslings. Condor 88, 169–180
(1986). doi:10.2307/1368912
240. A. Aubin, E. Dunn, C. MacInnes, Growth of Lesser Snow Geese on Arctic breeding
grounds. Condor 88, 365–370 (1986). doi:10.2307/1368884
241. B. W. Cain, Energetics of growth for Black-bellied Tree Ducks. Condor 78, 124–128
(1976). doi:10.2307/1366940
242. T. Pis, Energy metabolism and thermoregulation in hand-reared chukars (Alectoris chukar).
Comp. Biochem. Physiol. A Mol. Integr. Physiol. 136, 757–770 (2003).
doi:10.1016/S1095-6433(03)00245-9 Medline
243. A. E. McKechnie, B. O. Wolf, The allometry of avian basal metabolic rate: Good
predictions need good data. Physiol. Biochem. Zool. 77, 502–521 (2004).
doi:10.1086/383511 Medline
244. J. M. Starck, E. Sutter, Patterns of growth and heterochrony in moundbuilders
(Megapodiidae) and fowl (Phasianidae). J. Avian Biol. 31, 527–547 (2000).
doi:10.1034/j.1600-048X.2000.310413.x
245. T. Pis, D. Luśnia, Growth rate and thermoregulation in reared king quails (Coturnix
chinensis). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 140, 101–109 (2005).
doi:10.1016/j.cbpb.2004.11.008 Medline
246. L. Wing, J. Beer, W. Tidyman, Brood habits and growth of 'Blue Grouse'. Auk 61, 426–440
(1944). doi:10.2307/4079516
16
247. S. Jackson, J. Diamond, Ontogenetic development of gut function, growth, and metabolism
in a wild bird, the Red Jungle Fowl. Am. J. Physiol. 269, R1163–R1173 (1995). Medline
248. O. Heinroth, M. Heinroth, Die Vögel Mitteleuropas in Allen Lebens- und
Entwicklungsstufen Photographisch Aufgenommen und in Ihrem Seelenleben bei der
Aufzucht vom ei ab Beobachtet (H. Bermuhler, Berlin, Germany, 1967), vol. 6.
249. W. Healy, E. Nenno, in 4th National Wild Turkey Symposium (National Wild Turkey
Federation, Little Rock, AK, 1980), pp. 168–185.
250. S. N. Nahashon, S. E. Aggrey, N. A. Adefope, A. Amenyenu, D. Wright, Growth
characteristics of pearl gray guinea fowl as predicted by the Richards, Gompertz, and
logistic models. Poult. Sci. 85, 359–363 (2006). doi:10.1093/ps/85.2.359 Medline
251. V. D. Hayssen, A. Van Tienhoven, A. Van Tienhoven, Asdell's Patterns of Mammalian
Reproduction: A Compendium of Species-Specific Data (Cornell Univ. Press, Ithaca, NY,
1993).
252. H. Lindén, Growth rates and early energy requirements of captive juvenile capercaillie,
Tetrao urogallus. Finnish Game Res. 39, 53–67 (1981).
253. L. A. Bell, J. C. Pitman, M. A. Patten, D. H. Wolfe, S. K. Sherrod, S. D. Fuhlendorf,
Juvenile Lesser Prairie-chicken growth and development in southeastern New Mexico.
Wilson J. Ornithol. 119, 386–391 (2007). doi:10.1676/05-125.1
254. J. McLennan, L. Dew, J. Miles, N. Gillingham, R. Waiwai, Size matters: Predation risk and
juvenile growth in North Island Brown Kiwi (Apteryx mantelli). N. Z. J. Ecol. 28, 241–
250 (2004).
255. B. Reid, Food intake and growth rate of Cassowary chicks Casuarius spp reared at Mendi,
Southern Highland Papua New Guinea. Int. Zoo Yearb. 26, 189–198 (1987).
doi:10.1111/j.1748-1090.1987.tb03157.x
256. J. B. Dunning, CRC Handbook of Avian Body Masses (CRC Press, Boca Raton, FL, 1993).
257. K. Williams, D. Blache, I. Malecki, P. Sharp, T. Trigg, R. Rigby, G. Martin, in Ratites in a
Competitive World - Proceedings of the 2nd International Ratite Congress, F.
Huchzermeyer et al., Eds. (Oudtshoorn, South Africa, 1998), pp. 75–80.
258. J. Navarro, P. Vignolo, M. R. Demaría, N. Maceira, M. Martella, Growth curves of farmed
Greater Rheas (Rhea americana albescens) from central Argentina. Arch. Geflugelkd. 69,
90–93 (2005).
259. M. W. Bundle, H. Hoppeler, R. Vock, J. M. Tester, P. G. Weyand, High metabolic rates in
running birds. Nature 397, 31–32 (1999). doi:10.1038/16173
260. P. Tholon, S. Queiroz, Models for the analysis of growth curves for rearing tinamous
(Rhynchotus rufescens) in captivity. Braz. J. Poutry Sci. 9, 23–31 (2007).
261. Y. Elhashmi, O. Arabi, T. Taha, O. Eidam, Growth and development of muscles, bones and
fat of red-necked ostrich (Struthio camelus camelus). Online J. Anim. Feed Res. 1, 417–
422 (2011) (OJAFR).
262. E. Sumner Jr., Notes on the growth and behavior of young Golden Eagles. Auk 46, 161–169
(1929). doi:10.2307/4075690
17
263. G. R. Bortolotti, Physical development of nestling bald eagles with emphasis on the timing
of growth events. Wilson Bull. 96, 524–542 (1984).
264. H. F. Greeney, E. R. Hough, C. E. Hamilton, S. M. Wethington, Nestling growth and
plumage development of the Black-chinned Hummingbird (Archilochus alexandri) in
southeastern Arizona. Huitzil Rev. Ornitología Mexicana 9, 35–42 (2008).
265. G. D. Constantz, Growth of nestling Rufous Hummingbirds. Auk 97, 622–624 (1980).
266. K. Fierro-Calderón, T. E. Martin, Reproductive biology of the Violet-chested Hummingbird
in Venezuela and comparisons with other tropical and temperate hummingbirds. Condor
109, 680–685 (2007). doi:10.1650/8305.1
267. K. A. Muller, Physical and behavioral development of a roadrunner raised at the National
Zoological Park. Wilson Bull. 83, 186–193 (1971).
268. M. A. Springer, D. R. Osborne, Analysis of growth of the red-tailed hawk. Ohio J. Sci. 83,
13–19 (1983).
269. J. W. Parker, Growth of the Swainson's Hawk. Condor 78, 557–558 (1976).
doi:10.2307/1367108
270. J. Coleman, J. Fraser, Age estimation and growth of black and turkey vultures. J. Field
Ornithol. 60, 197–208 (1989).
271. F. Fowler, Studies of food and growth of the Prairie Falcon. Condor 33, 193–201 (1931).
doi:10.2307/1363715
272. S. Kleindorfer, H. Hoi, R. Ille, Nestling growth patterns and antipredator responses: A
comparison between four Acrocephalus warblers. Biologia 52, 677–685 (1997).
273. G. T. Austin, R. E. Ricklefs, Growth and development of the Rufous-winged Sparrow
(Aimophila carpalis). Condor 79, 37–50 (1977). doi:10.2307/1367528
274. R. E. Ricklefs, Patterns of growth in birds. III. Growth and development of the Cactus
Wren. Condor 77, 34–45 (1975). doi:10.2307/1366757
275. K. D. Whitmore, J. M. Marzluff, Hand-rearing corvids for reintroduction: Importance of
feeding regime, nestling growth, and dominance. J. Wildl. Manage. 62, 1460–1479
(1998). doi:10.2307/3802013
276. A. M. Makarieva, V. G. Gorshkov, B.-L. Li, S. L. Chown, P. B. Reich, V. M. Gavrilov,
Mean mass-specific metabolic rates are strikingly similar across life’s major domains:
Evidence for life’s metabolic optimum. Proc. Natl. Acad. Sci. U.S.A. 105, 16994–16999
(2008). doi:10.1073/pnas.0802148105 Medline
277. J. Haydock, J. D. Ligon, Brood reduction in the Chihuahuan Raven: An experimental study.
Ecology 67, 1194–1205 (1986). doi:10.2307/1938675
278. C. Kunz, J. Ekman, Genetic and environmental components of growth in nestling blue tits
(Parus caeruleus). J. Evol. Biol. 13, 199–212 (2000). doi:10.1046/j.14209101.2000.00158.x
279. R. J. O'Connor, Initial size and subsequent growth in passerine nestlings. Bird-banding 46,
329–340 (1975). doi:10.2307/4512164
18
280. R. Weaver, Measurement of growth in the Eastern Chipping Sparrow. Auk 54, 103–104
(1937). doi:10.2307/4078340
281. R. Ricklefs, Patterns of growth in birds. Ibis 110, 419–451 (1968). doi:10.1111/j.1474919X.1968.tb00058.x
282. M. S. Dutenhoffer, D. L. Swanson, Relationship of basal to summit metabolic rate in
passerine birds and the aerobic capacity model for the evolution of endothermy. Physiol.
Zool. 69, 1232–1254 (1996).
283. B. Kessel, A study of the breeding biology of the European starling (Sturnus vulgaris L.) in
North America. Am. Midl. Nat. 58, 257–331 (1957). doi:10.2307/2422615
284. G. H. F. Seixas, G. Mourão, Growth of nestlings of the Blue-fronted Amazon (Amazona
aestiva) raised in the wild or in captivity. Ornitol. Neotrop. 14, 295–305 (2003).
285. S. E. Koenig, The breeding biology of Black-billed Parrot Amazona agilis and Yellowbilled Parrot Amazona collaria in cockpit country, Jamaica. Bird Conserv. Int. 11, 205–
225 (2001). doi:10.1017/S0959270901000284
286. G. Vigo, M. Williams, D. J. Brightsmith, Growth of Scarlet Macaw (Ara macao) chicks in
southeastern Peru. Ornitol. Neotrop. 22, 143–153 (2011).
287. J. F. Masello, P. Quillfeldt, Chick growth and breeding success of the Burrowing Parrot.
Condor 104, 574–586 (2002). doi:10.1650/00105422(2002)104[0574:CGABSO]2.0.CO;2
288. J. L. Navarro, E. H. Bucher, Growth of Monk parakeets. Wilson Bull. 102, 520–525 (1990).
289. J. T. Pearson, Development of thermoregulation and posthatching growth in the altricial
cockatiel Nymphicus hollandicus. Physiol. Zool. 71, 237–244 (1998). Medline
290. S. Taylor, M. R. Perrin, Application of Richards's growth model to Brown-headed Parrot
Poicephalus cryptoxanthus nestlings. Ostrich J. Afr. Ornithol. 79, 79–82 (2008).
doi:10.2989/OSTRICH.2008.79.1.10.377
291. J. K. Carlson, E. Cortés, A. G. Johnson, E. Cortes, Age and growth of the blacknose shark,
Carcharhinus acronotus, in the eastern Gulf of Mexico. Copeia 1999, 684–691 (1999).
doi:10.2307/1447600
292. J. K. Carlson, K. J. Goldman, C. G. Lowe, in Biology of Sharks and their Relatives, J.
Carrier, J. Musick, M. Heithaus, Eds. (CRC Press, Boca Raton, FL, 2004), pp. 203–224.
293. R. Froese, D. Pauly, Eds., Fishbase: World Wide Web electronic publication,
www.fishbase.org (2011); accessed April 2014.
294. S.-J. Joung, Y.-Y. Liao, K.-M. Liu, C.-T. Chen, L.-C. Leu, Age, growth, and reproduction
of the spinner shark, Carcharhinus brevipinna, in the northeastern waters of Taiwan.
Zool. Stud. 44, 102–110 (2005).
295. S. Oshitani, H. Nakano, S. Tanaka, Age and growth of the silky shark Carcharhinus
falciformis from the Pacific Ocean. Fish. Sci. 69, 456–464 (2003). doi:10.1046/j.14442906.2003.00645.x
19
296. A. Cruz-Martinez, X. Chiappa-Carrara, V. Arenas-Fuentes, Age and growth of the bull
shark, Carcharhinus leucas, from southern Gulf of Mexico. J. Northwest Atl. Fish. Sci.
35, 367–374 (2005).
297. K. A. Killam, G. R. Parsons, Age and growth of the blacktip shark, Carcharhinus limbatus,
near Tampa Bay, Florida. Fish Bull. 87, 845–857 (1989).
298. S.-J. Joung, Y.-Y. Liao, C.-T. Chen, Age and growth of sandbar shark Carcharhinus
plumbeus in northeastern Taiwan waters. Fish. Res. 70, 83–96 (2004).
doi:10.1016/j.fishres.2004.06.018
299. W. W. Dowd, R. W. Brill, P. G. Bushnell, J. A. Musick, Standard and routine metabolic
rates of juvenile sandbar sharks (Carcharhinus plumbeus), including the effects of body
mass and acute temperature change. Fish Bull. 104, 323–331 (2006).
300. F. Santana, R. Lessa, Age determination and growth of the night shark (Carcharhinus
signatus) off the northeastern Brazilian coast. Fish Bull. 102, 156–167 (2004).
301. S. Davenport, J. Stevens, Age and growth of two commercially imported sharks
(Carcharhinus tilstoni and C. sorrah) from Northern Australia. Mar. Freshw. Res. 39,
417–433 (1988). doi:10.1071/MF9880417
302. S. Branstetter, J. Musick, J. Colvocoresses, A comparison of the age and growth of the tiger
shark, Galeocerdo cuvieri, from off Virginia and from the northwestern Gulf of Mexico.
Fish Bull. 85, 269–279 (1987).
303. C. A. Brown, S. H. Gruber, Age assessment of the lemon shark, Negaprion brevirostris,
using tetracycline validated vertebral centra. Copeia 1988, 747–753 (1988).
doi:10.2307/1445397
304. P. G. Bushnell, P. L. Lutz, S. H. Gruber, The metabolic rate of an active, tropical
elasmobranch, the lemon shark (Negaprion brevirostris). Exp. Biol. 48, 279–283 (1989).
Medline
305. R. Freitas, R. Rosa, S. Gruber, B. Wetherbee, Early growth and juvenile population
structure of lemon sharks Negaprion brevirostris in the Atol das Rocas Biological
Reserve, off northeast Brazil. J. Fish Biol. 68, 1319–1332 (2006). doi:10.1111/j.00221112.2006.00999.x
306. R. Lessa, F. Santana, F. Hazin, Age and growth of the blue shark Prionace glauca
(Linnaeus, 1758) off northeastern Brazil. Fish. Res. 66, 19–30 (2004).
doi:10.1016/S0165-7836(03)00193-0
307. F. S. Motta, O. B. Gadig, R. C. Namora, F. Braga, Size and sex compositions, length-weight
relationship, and occurrence of the Brazilian sharpnose shark, Rhizoprionodon lalandii,
caught by artisanal fishery from southeastern Brazil. Fish. Res. 74, 116–126 (2005).
doi:10.1016/j.fishres.2005.03.010
308. C. A. Simpfendorfer, Age and growth of the Australian sharpnose shark, Rhizoprionodon
taylori, from north Queensland, Australia. Environ. Biol. Fishes 36, 233–241 (1993).
doi:10.1007/BF00001718
309. K. Nair, Age and growth of the yellow dog shark Scoliodon laticaudus Muller and Henle
from Bombay waters. J. Mar. Biol. Assoc. India 18, 531–539 (1976).
20
310. A. N. Piercy, J. K. Carlson, J. A. Sulikowski, G. H. Burgess, Age and growth of the
scalloped hammerhead shark, Sphyrna lewini, in the north-west Atlantic Ocean and Gulf
of Mexico. Mar. Freshw. Res. 58, 34–40 (2007). doi:10.1071/MF05195
311. G. Parsons, Age determination and growth of the bonnethead shark Sphyrna tiburo: A
comparison of two populations. Mar. Biol. 117, 23–31 (1993). doi:10.1007/BF00346422
312. K. Shimada, Ontogenetic parameters and life history strategies of the Late Cretaceous
lamniform shark, Cretoxyrhina mantelli, based on vertebral growth increments. J.
Vertebr. Paleontol. 28, 21–33 (2008). doi:10.1671/02724634(2008)28[21:OPALHS]2.0.CO;2
313. H. F. Mollet, G. M. Cailliet, in Great White Sharks: The Biology of Charharadon
carcharias, A. P. Klimley, D. G. Ainley, Eds. (Academic Press, New York, 1996), pp.
81–89.
314. M. Ribot-Carballal, F. Galván-Magaña, C. Quiñónez-Velázquez, Age and growth of the
shortfin mako shark Isurus oxyrinchus from the western coast of Baja California Sur,
Mexico. Fish. Res. 76, 14–21 (2005). doi:10.1016/j.fishres.2005.05.004
315. C. Sepulveda, J. Graham, D. Bernal, Aerobic metabolic rates of swimming juvenile mako
sharks, Isurus oxyrinchus. Mar. Biol. 152, 1087–1094 (2007). doi:10.1007/s00227-0070757-2
316. W.-K. Chen, P.-C. Chen, K.-M. Liu, S.-B. Wang, Age and growth estimates of the
whitespotted bamboo shark, Chiloscyllium plagiosum, in the northern waters of Taiwan.
Zool. Stud. 46, 92 (2007).
317. S. P. Wintner, Preliminary study of vertebral growth rings in the whale shark, Rhincodon
typus, from the east coast of South Africa. Environ. Biol. Fishes 59, 441–451 (2000).
doi:10.1023/A:1026564707027
318. E. El Mouden, M. Znari, R. Brown, Skeletochronology and mark-recapture assessments of
growth in the North African agamid lizard (Agama impalearis). J. Zool. (London) 249,
455–461 (2001).
319. R. van Devender, Growth ecology of a tropical lizard, Basiliscus basiliscus. Ecology 59,
1031–1038 (1978). doi:10.2307/1938555
320. L. Blueweiss, H. Fox, V. Kudzma, D. Nakashima, R. Peters, S. Sams, Relationships
between body size and some life history parameters. Oecologia 37, 257–272 (1978).
doi:10.1007/BF00344996
321. J. Arcos-García, M. Peralta, V. Rosales, G. Martínez, M. Cerrilla, F. Sánchez, Growth
characterization of black iguana (Ctenosaura pectinata) in captivity. Veterinaria
(Mexico) 33, 409–420 (2002).
322. C. Duarte Rocha, Growth of the tropical sand lizard Liolaemus lutzae in Southeastern
Brazil. Amphib.-Reptil. 16, 257–264 (1995). doi:10.1163/156853895X00055
323. R. Blob, Interspecific scaling of the hindlimb skeleton in lizards, crocodilians, felids and
canids: Does limb bone shape correlate with limb posture? J. Zool. (London) 250, 507–
531 (2000). doi:10.1111/j.1469-7998.2000.tb00793.x
21
324. A. Ortega-Rubio, G. Halffter, R. Barbault, A. Castellanos, F. Salinas, Growth of Sceloporus
grammicus in La Michilia Biosphere Reserve, Mexico. J. Herpetol. 33, 123–126 (1999).
doi:10.2307/1565551
325. A. Ortega-León, E. Smith, J. Zúñiga-Vega, F. Méndez–de la Cruz, Growth and demography
of one population of the lizard Sceloporus mucronatus mucronatus. West. N. Am. Nat. 67,
492–502 (2007). doi:10.3398/1527-0904(2007)67[492:GADOOP]2.0.CO;2
326. A. Ortega-Rubio, R. Barbault, G. Halffter, A. Castellanos, F. Salinas, Growth effort of
Sceloporus scalaris (Sauria: Phrynosomatidae) at La Michilía Biosphere Reserve,
Mexico. Rev. Biol. Trop. 46, 145–155 (1998).
327. G. G. Watkins, Proximate causes of sexual size dimorphism in the iguanian lizard
Microlophus occipitalis. Ecology 77, 1473–1482 (1996). doi:10.2307/2265544
328. M. Van Sluys, Growth and body condition of the saxicolous lizard Tropidurus itambere in
southeastern Brazil. J. Herpetol. 32, 359–365 (1998). doi:10.2307/1565450
329. A. Pinto, H. C. Wiederhecker, G. R. Colli, Sexual dimorphism in the Neotropical lizard,
Tropidurus torquatus (Squamata, Tropiduridae). Amphib.Rreptil. 26, 127–137 (2005).
doi:10.1163/1568538054253384
330. T. R. Gasnier, W. E. Magnusson, A. V. Waichman, Growth curve shape and growth
variation of the tropical lizard Uranoscodon superciliosus (Sauria: Tropiduridae).
Ecotropica 3, 101–107 (1997).
331. J. Zúñiga-Vega, R. Rojas-González, J. Lemos-Espinal, M. Pérez-Trejo, Growth ecology of
the lizard Xenosaurus grandis in Veracruz, Mexico. J. Herpetol. 39, 433–443 (2005).
doi:10.1670/202-04A.1
332. L. Kratochvíl, D. Frynta, Production-growth model applied in eublepharid lizards
(Eublepharidae, Squamata): Accordance between growth and metabolic rates. Folia Zool.
(Brno) 52, 317–322 (2003).
333. B. E. Dial, L. L. Grismer, A phylogenetic analysis of physiological-ecological character
evolution in the lizard genus Coleonyx and its implications for historical biogeographic
reconstruction. Syst. Biol. 41, 178–195 (1992). doi:10.1093/sysbio/41.2.178
334. T. Madsen, R. Shine, Conflicting conclusions from long-term versus short-term studies on
growth and reproduction of a tropical snake. Herpetologica 57, 147–156 (2001).
335. G. A. Kaufman, J. W. Gibbons, Weight-length relationships in thirteen species of snakes in
the southeastern United States. Herpetologica 6, 31–37 (1975).
336. J. K. Webb, K. A. Christian, P. Fisher, Fast growth and early maturation in a viviparous sitand-wait predator, the northern death adder (Acanthophis praelongus), from tropical
Australia. J. Herpetol. 36, 505–509 (2002). doi:10.1670/00221511(2002)036[0505:FGAEMI]2.0.CO;2
337. T. Madsen, R. Shine, Silver spoons and snake body sizes: Prey availability early in life
influences long-term growth rates of free-ranging pythons. J. Anim. Ecol. 69, 952–958
(2000). doi:10.1046/j.1365-2656.2000.00477.x
22
338. D. Wilson, R. Heinsohn, J. Wood, Life-history traits and ontogenetic colour change in an
arboreal tropical python, Morelia viridis. J. Zool. (London) 270, 399–407 (2006).
doi:10.1111/j.1469-7998.2006.00190.x
339. J. J. Smith, M. Amarello, M. Goode, Seasonal growth of free-ranging Gila Monsters
(Heloderma suspectum) in a southern Arizona population. J. Herpetol. 44, 484–488
(2010). doi:10.1670/09-104.1
340. D. D. Beck, Biology of Gila Monsters and Beaded Lizards (Univ of California Press,
Berkely, CA, 2009), vol. 9.
341. D. D. Beck, C. H. Lowe, Ecology of the beaded lizard, Heloderma horridum, in a tropical
dry forest in Jalisco, Mexico. J. Herpetol. 25, 395–406 (1991). doi:10.2307/1564760
342. K. M. Hare, C. G. Longson, S. Pledger, C. H. Daugherty, Size, growth, and survival are
reduced at cool incubation temperatures in the temperate lizard Oligosoma suteri
(Lacertilia: Scincidae). Copeia 2004, 383–390 (2004).
343. D. Frynta, P. Frýdlová, J. Hnízdo, O. Simková, V. Cikánová, P. Velenský, Ontogeny of
sexual size dimorphism in monitor lizards: Males grow for a longer period, but not at a
faster rate. Zoolog. Sci. 27, 917–923 (2010). doi:10.2108/zsj.27.917 Medline
344. R. J. Laver, D. Purwandana, A. Ariefiandy, J. Imansyah, D. Forsyth, C. Ciofi, T. S. Jessop,
Life-history and spatial determinants of somatic growth dynamics in Komodo dragon
populations. PLOS ONE 7, e45398 (2012). doi:10.1371/journal.pone.0045398 Medline
345. J. M. Lemm, M. S. Edwards, T. D. Grant, A. C. Alberts, Comparison of growth and
nutritional status of juvenile Komodo monitors (Varanus komodoensis) maintained on
rodent or poultry-based diets. Zoo Biol. 23, 239–252 (2004). doi:10.1002/zoo.20000
346. T. S. Jessop, T. Madsen, J. Sumner, H. Rudiharto, J. A. Phillips, C. Ciofi, Maximum body
size among insular Komodo dragon populations covaries with large prey density. Oikos
112, 422–429 (2006). doi:10.1111/j.0030-1299.2006.14371.x
347. E. R. Pianka, D. R. King, R. A. King, Varanoid Lizards of the World (Indiana Univ. Press,
Bloomington, IN, 2004).
348. V. de Buffrénil, G. Hémery, Variation in longevity, growth, and morphology in exploited
Nile Monitors (Varanus niloticus) from Sahelian Africa. J. Herpetol. 36, 419–426 (2002).
doi:10.1670/0022-1511(2002)036[0419:VILGAM]2.0.CO;2
349. R. Jackson, The poorly known rusty monitor Varanus semiremex: History, natural history,
captive breeding and husbandry. Herpetafauna 35, 15–24 (2005).
350. S. J. Blaber, D. A. Milton, J. Pang, P. Wong, O. Boon-Teck, L. Nyigo, D. Lubim, The life
history of the tropical shad Tenualosa toli from Sarawak: First evidence of protandry in
the Clupeiformes? Environ. Biol. Fishes 46, 225–242 (1996). doi:10.1007/BF00004998
351. R. Eaton, R. Farley, Growth and the reduction of depensation of zebrafish, Brachydanio
rerio, reared in the laboratory. Copeia 1974, 204–209 (1974). doi:10.2307/1443024
352. O. L. Weyl, A. J. Booth, On the life history of a cyprinid fish, Labeo cylindricus. Environ.
Biol. Fishes 55, 215–225 (1999). doi:10.1023/A:1007543319416
23
353. J. Travis, J. A. Farr, M. McManus, J. C. Trexler, Environmental effects on adult growth
patterns in the male sailfin molly, Poecilia latipinna (Poeciliidae). Environ. Biol. Fishes
26, 119–127 (1989). doi:10.1007/BF00001028
354. C. García, W. Troncoso, S. Sánchez, L. Perdomo, Contribution to vital statistics of a guppy
Poecilia reticulata Peters (Pisces: Cyprinodontiformes: Poecillidae) pond population in
Santa Marta, Colombia. Pan-American Journal of Aquatic Sciences 3, 335–339 (2008).
355. L.-H. Teo, T.-W. Chen, A study of metabolic rates of Poecilia reticulata Peters under
different conditions. Aquacult. Res. 24, 109–117 (1993). doi:10.1111/j.13652109.1993.tb00833.x
356. F. E. Felin, Growth characteristics of the poeciliid fish Platypoecilus maculatus. Copeia
1951, 15–28 (1951). doi:10.2307/1438045
357. F. Guo, L. Teo, T. Chen, Effects of anaesthetics on the oxygen consumption rates of
platyfish Xiphophorus maculatus (Günther). Aquacult. Res. 26, 887–894 (1995).
doi:10.1111/j.1365-2109.1995.tb00883.x
358. J. Choat, L. Axe, Growth and longevity in acanthurid fishes; an analysis of otolith
increments. Mar. Ecol. Prog. Ser. 134, 15–26 (1996). doi:10.3354/meps134015
359. S. K. Wilson, Growth, mortality and turnover rates of a small detritivorous fish. Mar. Ecol.
Prog. Ser. 284, 253–259 (2004). doi:10.3354/meps284253
360. Z. Zekeria, S. Weertman, B. Samuel, T. Kale-Ab, J. Videler, Growth of Chaetodon larvatus
(Chaetodontidae: Pisces) in the southern Red Sea. Mar. Biol. 148, 1113–1122 (2006).
doi:10.1007/s00227-005-0146-7
361. D. Jepsen, K. Winemiller, D. Taphorn, D. R. Olarte, Age structure and growth of peacock
cichlids from rivers and reservoirs of Venezuela. J. Fish Biol. 55, 433–450 (1999).
doi:10.1111/j.1095-8649.1999.tb00689.x
362. A. J. Booth, G. S. Merron, C. D. Buxton, The growth of Oreochromis andersonii (Pisces:
Cichlidae) from the Okavango Delta, Botswana, and a comparison of the scale and otolith
methods of ageing. Environ. Biol. Fishes 43, 171–178 (1995). doi:10.1007/BF00002488
363. K. Hustler, B. Marshall, Population dynamics of two small cichlid fish species in a tropical
man-made lake (Lake Kariba). Hydrobiologia 190, 253–262 (1990).
doi:10.1007/BF00008193
364. V. Hernaman, P. Munday, Life-history characteristics of coral reef gobies. I. Growth and
life-span. Mar. Ecol. Prog. Ser. 290, 207–221 (2005). doi:10.3354/meps290207
365. J. Choat, C. Davies, J. Ackerman, B. Mapstone, Age structure and growth in a large teleost,
Cheilinus undulatus, with a review of size distribution in labrid fishes. Mar. Ecol. Prog.
Ser. 318, 237–246 (2006). doi:10.3354/meps318237
366. S. J. Newman, M. Cappo, D. M. Williams, Age, growth, mortality rates and corresponding
yield estimates using otoliths of the tropical red snappers, Lutjanus erythropterus, L.
malabaricus and L. sebae, from the central Great Barrier Reef. Fish. Res. 48, 1–14
(2000). doi:10.1016/S0165-7836(00)00115-6
24
367. R. Edwards, Growth rates of Lutjanidae (snappers) in tropical Australian waters. J. Fish
Biol. 26, 1–4 (1985). doi:10.1111/j.1095-8649.1985.tb04233.x
368. T. B. Linkowski, C. Żukowski, Observations on the growth of Notothenia coriiceps
neglecta Nybelin and Notothenia rossii marmorata Fischer in Admiralty Bay (King
George Island, South Shetland Islands). Polish Polar Res. 1, 155–162 (1980).
369. I. Johnston, A. Clarke, P. Ward, Temperature and metabolic rate in sedentary fish from the
Antarctic, North Sea and Indo-West Pacific Ocean. Mar. Biol. 109, 191–195 (1991).
doi:10.1007/BF01319386
370. D. E. Wohlschlag, Growth of an Antarctic fish at freezing temperatures. Copeia 1961, 11–
18 (1961). doi:10.2307/1440165
371. D. Morris, A. North, Oxygen consumption of five species of fish from South Georgia. J.
Exp. Mar. Biol. Ecol. 78, 75–86 (1984). doi:10.1016/0022-0981(84)90070-4
372. R. M. Wells, Respiration of antarctic fish from McMurdo Sound. Comp. Biochem. Physiol.
A Comp. Physiol. 88, 417–424 (1987). doi:10.1016/0300-9629(87)90056-9 Medline
373. M. L. Mesa, M. Vacchi, Age and growth of high Antarctic notothenioid fish. Antarct. Sci.
13, 227–235 (2001). doi:10.1017/S0954102001000335
374. S. Schwamborn, B. Ferreira, Age structure and growth of the dusky damselfish, Stegastes
fuscus, from Tamandare reefs, Pernambuco, Brazil. Environ. Biol. Fishes 63, 79–88
(2002). doi:10.1023/A:1013851532298
375. J. Choat, L. Axe, D. Lou, Growth and longevity in fishes of the family Scaridae. Mar. Ecol.
Prog. Ser. 145, 33–41 (1996). doi:10.3354/meps145033
376. S. Taghavi Motlagh, S. Hashemi, P. Kochanian, Population biology and assessment of
Kawakawa (Euthynnus affinis) in Coastal Waters of the Persian Gulf and Sea of Oman
(Hormozgan Province) Iran. J. Fish. Sci. 9, 315–326 (2010).
377. R. Brill, On the standard metabolic rates of tropical tunas, including the effect of body size
and acute temperature change. Fish Bull. 85, 25–35 (1987).
378. P. Rohit, A. Chellappan, E. Abdussamad, K. Joshi, K. Koya, M. Sivadas, S. Ghosh, A.
Margaret Muthu Rathinam, S. Kemparaju, H. Dhokia, Fishery and bionomics of the little
tuna, Euthynnus affinis (Cantor, 1849) exploited from Indian waters. Indian J. Fish. 59,
37–46 (2012).
379. M. Mohan, K. Kunhikoya, Age and growth of Katsuwonus pelamis (Linnaeus) and Thunnus
albacares (Bonnaterre) from Minicoy waters. Central Marine Fisheries Res. Bull. 36,
143–148 (1985).
380. J. H. Farley, N. P. Clear, B. Leroy, T. L. Davis, G. McPherson, Age, growth and
preliminary estimates of maturity of bigeye tuna, Thunnus obesus, in the Australian
region. Mar. Freshw. Res. 57, 713–724 (2006). doi:10.1071/MF05255
381. P. G. Bushnell, R. W. Brill, R. E. Bourke, Cardiorespiratory responses of skipjack tuna
(Katsuwonus pelamis), yellowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus
obesus) to acute reductions of ambient oxygen. Can. J. Zool. 68, 1857–1865 (1990).
doi:10.1139/z90-265
25
382. E. Abdussamad, Fishery, biology and population characteristics of longtail tuna, Thunnus
tonggol (Bleeker, 1851) caught along the Indian coast. Indian J. Fish. 59, 7–16 (2012).
383. R. J. Pears, J. H. Choat, B. D. Mapstone, G. A. Begg, Demography of a large grouper,
Epinephelus fuscoguttatus, from Australia's Great Barrier Reef: Implications for fishery
management. Mar. Ecol. Prog. Ser. 307, 259–272 (2006). doi:10.3354/meps307259
384. E. Grandcourt, Demographic characteristics of selected epinepheline groupers (family
Serranidae, subfamily Epinephelinae) from Aldabra Atoll, Seychelles. Atoll Res. Bull.
593, 200–216 (2005).
385. J. G. Díaz-Uribe, J. F. Elorduy-Garay, M. González-Valdovinos, Age and growth of the
leopard grouper, Mycteroperca rosacea, in the southern Gulf of California, México. Pac.
Sci. 55, 171–182 (2001). doi:10.1353/psc.2001.0012
386. B. Ferreira, G. Russ, Age validation and estimation of growth rate of the coral trout,
Plectropomus leopardus (Lacepede 1802) from Lizard Island, Northern Great Barrier
Reef. Fish Bull. 92, 46–57 (1994).
387. M. Ntiba, V. Jaccarini, Age and growth parameters of Siganus sutor in Kenyan marine
inshore water, derived from numbers of otolith microbands and fish lengths. J. Fish Biol.
33, 465–470 (1988). doi:10.1111/j.1095-8649.1988.tb05487.x
388. J. G. Pajuelo, J. M. Lorenzo, Growth and age estimation of Diplodus sargus cadenati
(Sparidae) off the Canary Islands. Fish. Res. 59, 93–100 (2002). doi:10.1016/S01657836(01)00421-0
389. P. Radebe, B. Mann, L. Beckley, A. Govender, Age and growth of Rhabdosargus sarba
(Pisces: Sparidae), from KwaZulu-Natal, South Africa. Fish. Res. 58, 193–201 (2002).
doi:10.1016/S0165-7836(01)00383-6
390. J. MacKinnon, Metabolism and its relationship with growth rate of American plaice,
Hippoglossoides platessoides Fabr. J. Exp. Mar. Biol. Ecol. 11, 297–310 (1973).
doi:10.1016/0022-0981(73)90029-4
391. J. M. Penha, L. A. Mateus, G. Barbieri, Age and growth of the duckbill catfish (Sorubim cf.
lima) in the Pantanal. Braz. J. Biol. 64, 125–134 (2004). doi:10.1590/S151969842004000100014 Medline
392. K.-M. Liu, M.-L. Lee, S.-J. Joung, Y.-C. Chang, Age and growth estimates of the sharptail
mola, Masturus lanceolatus, in waters of eastern Taiwan. Fish. Res. 95, 154–160 (2009).
doi:10.1016/j.fishres.2008.08.013
393. K. A. Bjorndal, A. B. Bolten, M. Y. Chaloupka, Green turtle somatic growth model:
Evidence for density dependence. Ecol. Appl. 10, 269–282 (2000).
394. B. Wallace, T. Jones, What makes marine turtles go: A review of metabolic rates and their
consequences. J. Exp. Mar. Biol. Ecol. 356, 8–24 (2008).
doi:10.1016/j.jembe.2007.12.023
395. T. T. Jones, M. D. Hastings, B. L. Bostrom, D. Pauly, D. R. Jones, Growth of captive
leatherback turtles, Dermochelys coriacea, with inferences on growth in the wild:
Implications for population decline and recovery. J. Exp. Mar. Biol. Ecol. 399, 84–92
(2011). doi:10.1016/j.jembe.2011.01.007
26
396. F. Paladino, J. Spotila, M. O'Connor, R. Gatten Jr., Respiratory physiology of adult
leatherback turtles (Dermochelys coriacea) while nesting on land. Chelonian Conserv.
Biol. 2, 223–229 (1996).
27