Review for MA227 Final Chapter 12 - Multiple Integration 1. 1 1 0 Evaluate the iterated integral: 3 x e y dydx. Solution: We evaluate by switching the order of integration. The region in the xy-plane is above the curve y x , below the line y 1 and to the right of x 0. y x y 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x So 1 1 0 3 x e y dydx 1 y2 0 0 3 e y dxdy 1 1 0 xe y 3 | y0 dy 0 y 2 e y 3 dy 2 1 e y 3 | 1 1 e − 1 0 3 3 (using u-substitution). 2.a) 4 2 −2 x 2 x 2 ydydx. Sketch the region of integration: Solution: y 4 3 2 1 -2 -1 0 1 2 x 1 b) Reverse the order of integration. Solution: y x 2 x y , 0 ≤ y ≤ 4, so 2 4 4 −2 x 2 x 2 ydydx 0 − y y x 2 ydxdy. 3. Evaluate ydA, where D is the region in the first quadrant that lies above the hyperbola xy 1 D and the line y x and below the line y 2. Solution: y 2.0 1.5 1.0 0.5 0.0 0.0 0.5 1.0 1.5 1 x 2.0 x For this region, it’s easiest to integrate first with respect to x. We have 1y ≤ x ≤ y, and 1 ≤ y ≤ 2, so 3 2 y 2 2 D ydA 1 1 ydxdy 1 y y − 1y dy 1 y 2 − 1 dy y3 − y| 21 43 . y If we integrate first with respect to y, we have to break it into 2 regions: 1 ≤ x ≤ 1, 1 ≤ y ≤ 2, and 1 ≤ x ≤ 2, x ≤ y ≤ 2 x 2 1 2 D ydA 1 1 2 4. x ydydx 2 2 1 x ydydx 4 3 2 2 0 y Consider fx, ydxdy. a) Sketch the region of integration. Solution: 0 ≤ y ≤ 2, y ≤ x ≤ 2 2 y 2.0 1.5 1.0 0.5 0.0 0.0 b) 0.5 1.0 1.5 2.0 x Reverse the order of integration: Solution: 0 ≤ x ≤ 2, 0 ≤ y ≤ x 2 2 2 x 0 y fx, ydxdy 0 0 fx, ydydx c) Rewrite the integral in terms of polar coordinates. Solution: In polar coordinates, the line y x is given by . Noting that the polar equation of 4 the line x 2 is r cos 2 or r 2 sec , we have /4 2 sec 0 0 5. fr cos , r sin rdrd. Evaluate x x 2 y 2 dA, where D is the closed disk with radius 1 and center 0, 1. D Solution: Since we’re integrating over a circle it makes sense to use polar coordinates. The disk with radius 1 and center 0, 1 is given in rectangular coordinates by x 2 y − 1 2 1. Convert to polar: x 2 y − 1 2 1 x 2 y 2 − 2y 1 1 x 2 y 2 2y r 2 2r sin r 2 sin . The entire circle is traced out as ranges from 0 to , so we have 2 sin D x x 2 y 2 dA 0 0 2 sin 3 r cos drd r cos r 2 rdrd 0 0 4 sin 4 cos d 4 sin 5 | 0 0 0 5 (using u-substitution) 0 r 4 cos | 2 sin d 0 4 6. Evaluate ydV, where E is the tetrahedron bounded by the planes x 0, y 0, z 0 and E 2x y z 2. 3 Solution: 2 − 2x − y In the xy-plane we have y 2.0 1.5 1.0 0.5 0.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 x , where 0 ≤ y ≤ 2 − 2x, 0 ≤ x ≤ 1 1 2−2x 2−2x−y 1 2−2x 2−2x−y 0 ydzdydx yz| 0 dydx 0 0 0 0 1 2−2x 1 y 3 2−2x 0 0 2y − 2yx − y 2 dydx y 2 − y 2 x − | 0 dx 0 3 so ydV E 4 − 4x 4x 2 − 43 x 3 dx 4 x − 2x 2 4 x 3 − x | 10 3 3 3 4 −2 4 − 1 1. 3 3 3 3 1 0 4 3 7. Give an expression for the volume inside the sphere x 2 y 2 z 2 4 and outside the cylinder 2 2 x y 1. Solution: 4 2 1 -2 1 2 -2 z yx 1 -1 2 -2 We’ll consider half of the figure and then multiply our answer by 2. Take the top half of the figure. Then we have 0 ≤ z ≤ 4 − x 2 − y 2 . The region over which we integrate in the xy-plane is the annular region between the circles x 2 y 2 1 and x 2 y 2 4 : y 2 1 -2 -1 1 2 x -1 -2 . We’ll use cylindrical coordinates to find the volume. Recall that in cylindrical coordinates, x r cos , y r sin , z z, and dV rdzdrd. Our z limits become 0 ≤ z ≤ V 2 4 − r 2 , and we have 1 ≤ r ≤ 2, 0 ≤ ≤ 2 2 2 0 1 0 4−r 2 rdzdrd . 8. Find the volume of the region of the ball x 2 y 2 z − 1 2 1 cut out by the cone z 2 x 2 y 2 using spherical coordinates. Solution: 5 1.5 1z 0.5 -2 -1 -2 -1 0 y x 1 1 2 2 Recall that in spherical coordinates, x sin cos , y sin sin , z cos , dV 2 sin . x 2 y 2 z − 1 2 1 sin cos 2 sin sin 2 cos − 1 2 1 2 2 cos 2 cos . The equation of the cone becomes cos 2 sin cos 2 sin sin 2 tan 2 1 . 4 So V 2 4 0 2 cos 0 0 2 sin ddd 9. Find the volume of the solid bounded by the plane z 0 and the paraboloid z 1 − x 2 − y 2 . Sketch the volume. Solution: 1 − x2 − y2 The paraboloid z 1 − x 2 − y 2 intersects the x, y −plane on the circle x 2 y 2 1. Let D denote the inside of the circle. Then the volume is 6 V 1−x 2 −y 2 D 0 dzdA Using cylindrical coordinates x r cos , y r sin , z z we have, V 2 1 1−r 2 0 0 0 r dzdrd 2 1 0 0 1 − r 2 rdrd 2 7
© Copyright 2026 Paperzz