MATH 104 HW 8 CLAY SHONKWILER §7.1 6. Evaluate the integral Z π/3 π/4 sec2 z dz. tan z Answer: Let u = tan z. Then du = sec2 zdz, so the above integral becomes Z √3 √ √ 1 du = ln |u|]1 3 = ln 3 − ln 1 = ln 3. u 2 1 35. Evaluate Z eπ/3 dx . x cos(ln x) 1 Answer: Let u = ln x. Then du = x1 dx, so the above integral becomes Z π/3 Z π/3 du 1 √ 1 √ π/3 = sec udu = ln | sec u + tan u|]0 = ln + 3 −ln(1) = ln + 3 . cos u 2 2 0 0 38. Evaluate 4 Z 2 2dx . x2 − 6x + 10 Answer: Note that (x2 − 6x) + 10 = (x2 − 6x + 9) + 10 − 9 = (x − 3)2 + 1, so we can re-write the integral as Z 4 2 2dx . (x − 3)2 + 1 Now, letting u = x − 3, this in turn is equal to Z 1 −1 1 π −π du = 2 2 = 2 tan u − = π. −1 2 2 4 4 −1 u + 1 44. Evaluate Z (csc x − tan x)2 dx. Answer: First, note that Z Z 2 (csc x − tan x) dx = (csc2 x − 2 csc x tan x + tan2 x)dx. 1 2 CLAY SHONKWILER Now, R csc xdx = − cot x + C1 . Further, 1 sin x 1 · = = sec x sin x cos x cos x R R and sec x = ln | sec x + tan x| + C2 , so 2 csc x tan x = 2 ln | sec x + tan x| + C2 . Finally, csc x tan x = Z Z 2 tan xdx = (sec2 x − 1)dx = tan x − x + C3 . Thus, if C = C1 + C2 + C3 , Z (csc x − tan x)2 dx = cot x + ln | sec x + tan x| + tan x − x + C. 48. Evaluate x2 dx. x2 + 1 Z Answer: Using long division, x2 dx = x2 + 1 Z Z 1− 1 dx = x − tan−1 x + C. x2 + 1 55. Evaluate π/4 Z 0 1 + sin x dx. cos2 x Answer: Splitting the numerator, we see that Z π/4 0 Z π/4 1 sin x dx + dx 2 cos x cos2 x 0 0 Z π/4 Z 2 = sec xdx + sec x tan xdx 1 + sin x dx = cos2 x Z π/4 0 π/4 = tan x + sec x]0 √ = 1 + 2 − (0 + 1) √ = 2 58. Evaluate Z 1 dx. 1 + cos x MATH 104 HW 8 3 Answer: Note that we can multiply by a form of 1 in the following way: Z Z 1 1 1 − cos x dx = · dx 1 + cos x 1 + cos x 1 − cos x Z 1 − cos x = dx 1 − cos2 x Z 1 − cos x dx = sin2 x Z Z 1 cos x = dx 2 dx − sin x sin2 x Z Z = csc2 xdx − csc x cot xdx = − cot x + csc x + C. 83. R (a): Evaluate cos3 θdθ. Answer: Note that Z Z Z Z 3 2 cos θdθ = (1 − sin θ) cos θdθ = cos θdθ − sin2 θ cos θdθ. R Now, cos θdθ = sin θ + C1 . Further, if u = sin θ, then du = cos θdθ, so we can re-write the second integral as Z u3 sin3 θ u2 du = + C2 = + C2 . 3 3 Hence, if C = C1 + C2 , Z sin3 θ cos3 θdθ = sin θ + + C. 3 R (b): Evaluate cos5 θdθ. Answer: Note that cos5 θ = cos2 θ cos3 θ = (1 − sin2 θ) cos3 θ, so Z Z Z cos5 θdθ = cos3 θdθ − sin2 θ cos3 θdθ. R Now, we already computed cos3 θdθ in (a). On the other hand, Z Z Z Z sin2 θ cos3 θdθ = sin2 θ(1−sin2 θ) cos θdθ = sin2 θ cos θdθ− sin4 θ cos θ. 3 5 In each case, we let u = sin θ, so this integral becomes sin3 θ − sin5 θ + C1 . Hence, combining the above, we see that 3 Z sin3 θ sin θ sin5 θ sin5 θ 5 cos θdθ = sin θ + − − + C = sin θ + + C. 3 3 5 5 (c): Without R actually evaluating the integral, explain how you would evaluate cos9 θdθ. 4 CLAY SHONKWILER Answer: We would proceed as in the above cases, making substitutions for cos2 θ and using what we know about the integrals of cos to lower powers. §7.2 7. Evaluate Z tan−1 ydy 1 Answer: Let u = tan−1 y and dv = dy. Then du = 1+y 2 dy and v = y, so Z Z ydy tan−1 ydy = y tan−1 y − . 1 + y2 Now letting u = 1 + y 2 , du = 2ydy, so Z Z ydy 1 du 1 1 = = ln |u| + C1 = ln 1 + y 2 + C1 . 2 1+y 2 u 2 2 Therefore, Z tan−1 ydy = y tan−1 y − 1 ln 1 + y 2 + C. 2 10. Evaluate Z x3 ex dx. Answer: Let u = x3 and dv = ex dx. Then du = 3x2 dx and v = ex , so Z Z 3 x 3 x x e dx = x e − 3 x2 ex dx. Now, letting u = x2 and dv = ex dx, du = 2xdx and v = ex , so Z Z 2 x 2 x x e dx = x e − 2 xex dx. Next, letting u = x and dv = ex , we see that du = dx and v = ex , so Z Z x x xe dx = xe − ex dx = xex − ex . Therefore, putting it all together, Z x3 ex dx = x3 ex − 3 x2 ex − 2 (xex − ex ) = x3 ex − 3x2 ex + 6xex − 6ex + C. 16. Evaluate Z t2 e4t dt. Answer: Let u = t2 and dv = e4t dt. Then du = 2tdt and v = Z Z 4t 1 2 4t 2e t e dt = t − te4t dt. 4 2 e4t 4 . Hence, MATH 104 HW 8 5 4t Letting u = t and dv = e4t dt, du = dt and v = e4 . Thus, Z Z e4t 1 e4t e4t 4t te dt = t − e4t dt = t − . 4 4 4 16 Thus, Z 4t t2 e4t te4t e4t 1 e4t e4t 2 4t 2e t e dt = t t = − − − + + C. 4 2 4 16 4 8 32 22. Evaluate Z e−y cos ydy Answer: Let u = cos y and dv = e−y dy. Then du = − sin ydy and v = −e−y , so Z Z e−y cos ydy = −e−y cos y − e−y sin ydy. Now, let u = sin y and dv = e−y dy. Then du = cos y and v = −e−y dy, so Z Z e−y sin ydy = −e−y sin y + e−y cos ydy. Therefore, Z Z Z −y −y −y −y −y −y e cos ydy = −e cos y− −e sin y + e cos ydy = −e cos y+e sin y− e−y cos ydy. Adding R e−y cos ydy to both sides, we see that Z 2 e−y cos ydy = e−y sin y − e−y cos y + C1 , so, if C = C1 /2, Z sin y − cos y e−y sin y − e−y cos y +C = + C. e−y cos ydy = 2 2ey 26. Evaluate Z 1 √ x 1 − xdx. 0 √ Answer: Let u = x and dv = 1 − xdx. Then du = dx and v = − 32 (1 − x)3/2 . Hence, 1 Z 1 Z √ 2 1 2 3/2 x 1 − xdx = − x(1 − x) + (1 − x)3/2 dx 3 3 0 0 0 1 2 2 2 3/2 5/2 = − x(1 − x) − · (1 − x) 3 3 5 0 4 = (0 − 0) − 0 − 15 4 = . 15 6 CLAY SHONKWILER 27. Evaluate Z π/3 x tan2 xdx. 0 Answer: Note that Z π/3 Z π/3 Z 2 2 x tan xdx = x(sec x − 1)dx = 0 Now, R π/3 0 xdx = 0 i 2 π/3 x 2 0 2 = π2 18 . xdx. On the other hand, if u = x and dv = π/3 tan xdx 0 π√ π/3 3 − [ln | sec x|]0 3 π√ 3 − (ln 2 − ln 1) = 3 √ π = 3 − ln 2. 3 Therefore, 0 π/3 0 = Z Z x sec xdx − 0 sec2 xdx, then du = dx and v = tan x, so Z π/3 Z π/3 = x tan x]0 − 0 π/3 π/3 x tan2 xdx = π√ π2 3 − ln 2 − . 3 18 DRL 3E3A, University of Pennsylvania E-mail address: [email protected]
© Copyright 2026 Paperzz