CHAPTER 53 METHODS OF DIFFERENTIATION EXERCISE 225 Page 617 1. Differentiate with respect to x: (a) 5x5 (a) If y = 5x5 then 1 x dy = (2.4) ( 3.5 x3.5−1 ) = 8.4x 2.5 dx dy 1 1 = −1 x −2 = − = x −1 then x2 dx x 2. Differentiate with respect to x: (a) (a) If y = (c) dy = (5) ( 5 x 4 ) = 25x 4 dx (b) If y = 2.4x3.5 then (c) If y = (b) 2.4x3.5 −4 x2 (b) 6 (c) 2x −4 dy 8 = −4x −2 then ( 4) ( −2 x −3 ) = 8 x −3 or =− 2 x dx x3 (b) If y = 6 then (c) If y = 2x then dy =0 dx dy =2 dx 3. Differentiate with respect to x: (a) 2 x (b) 3 3 x5 (c) 4 x 1 1 1 dy 1 1 − 12 − 2 (a) If y = 2 x = 2 x 2 then = (2) x = = x= 1 dx x 2 x2 2 5 dy 5 23 3 = 5 3 x2 (b) If y = 3 3 x5 = 3 x 3 then = (3) = x 5 x dx 3 1 3 2 4 4 dy 2 − 1 − 32 − 2 then 2 = (c) If y = = = 4x =− (4) x = − 2 x − 3 =− 1 dx x3 x x2 2 x2 911 © 2014, John Bird 4. Differentiate with respect to x: (a) (a) If y = − −3 x 3 (b) (x – 1)2 (c) 2 sin 3x 1 4 3 3 dy 1 − − 1 − 43 3 then 3 = = = − = − 3x = − − = x x ( 3) 1 4 3 x d 3 x x3 x3 3 1 x4 (b) If y = (x – 1)2 = (x – 1)(x – 1) = x 2 − x − x + 1 = x 2 − 2 x + 1 then dy = 2x – 2 or 2(x – 1) dx (c) If y = 2 sin 3x dy = (2)(3 cos 3x) = 6 cos 3x dx then (b) 2e6x 5. Differentiate with respect to x: (a) – 4 cos 2x then (b) If y = 2e6x then dy = (2) ( 6 e6 x ) = 12 e6 x dx dy 3 15 = (3) ( −5e −5 x ) = −15e −5 x = − = 3e −5 x then e5 x dx e5 x 6. Differentiate with respect to x: (a) 4 ln 9x (a) If y = 4 ln 9x then (b) e x − e− x 2 (c) 1− x x dy 1 4 = (4) = x dx x (b) If y = e x − e− x 1 x 1 − x = e − e 2 2 2 (c) If y = 1 1 1− x 1 x −1 − = − = x −1 − x 2 = x −1 − x 2 x x x then 3 e5 x dy = (–4)(– 2 sin 2x) = 8 sin 2x dx (a) If y = –4 cos 2x (c) If y = (c) then dy 1 x 1 1 1 e x + e− x = e − ( − e x= ) e x + e− x = dx 2 2 2 2 2 dy 1 1 −3 1 1 1 1 1 − 1 −1 = − x −2 − − x 2 = − + x 2= − + 3 =− + dx x2 2 x2 2 x 2 x 2 2 x3 2 912 © 2014, John Bird 7. Find the gradient of the curve y = 2t4 + 3t3 – t + 4 at the points (0, 4) and (1, 8) If y= 2t 4 + 3t 3 − t + 4 , then gradient, dy = 8t 3 + 9t 2 − 1 dt At (0, 4), t = 0, hence gradient = 8(0)3 + 9(0) 2 − 1 = – 1 At (1, 8), t = 1, hence gradient = 8(1)3 + 9(1) 2 − 1 = 16 8. Find the coordinates of the point on the graph y = 5x2 – 3x + 1 where the gradient is 2 dy If y = 5 x 2 − 3 x + 1 , then gradient = = 10 x − 3 dx When the gradient is 2, 10x – 3 = 2 i.e. 10x = 5 and x = 1 2 2 5 3 3 1 1 y = 5 − 3 +1 = − +1 = 4 2 4 2 2 1 When x = , 2 1 3 Hence, the coordinates of the point where the gradient is 2 is , 2 4 9. (a) Differentiate y = (b) Evaluate (a) 2 θ 2 + 2 ln 2θ – 2(cos 5θ + 3 sin 2θ) – 2 e3θ dy π when θ = , correct to 4 significant figures. dθ 2 2 2 y = + 2 ln 2θ − 2(cos 5θ + 3sin 2θ ) − θ2 e3θ = 2θ −2 + 2 ln 2θ − 2 cos 5θ − 6sin 2θ − 2e −3θ Hence, dy 2 = −4θ −3 + − 2(−5sin 5θ ) − 6(2 cos 2θ ) − 2 ( −3e −3θ ) dθ θ =− (b) When θ = π 2 , 4 θ3 + 2 θ + 10sin 5θ − 12 cos 2θ + 6 e3θ dy 4 2 5π 2π 6 =− + + 10sin − 12 cos + π 3 3 dθ 2 2 π π e 2 2 2 = –1.032049 + 1.2732395 + 10 + 12 + 0.0538997 913 © 2014, John Bird = 22.30, correct to 4 significant figures 10. Evaluate ds π , correct to 3 significant figures, when t = given s = 3 sin t – 3 + dt 6 t. 1 ds 1 −1 1 2 3cos t + If s = 3 sin t – 3 + = t 3sin t − 3 + t 2 then = 3cos t − 0 + t= dt 2 2 t π ds π When t == , 3cos + 6 dt 6 2 1 (π / 6 ) = 3.29, correct to 3 significant figures 11. A mass m is held by a spring with a stiffness constant k. The potential energy p of the system is given by:= p 1 2 kx − mgx where x is the displacement and g is acceleration due to gravity. 2 The system is in equilibrium if If p = If dp = 0 . Determine the expression for x for system equilibrium. dx 1 2 dp kx − mgx then = kx − mg 2 dx dp = 0 then kx – mg = 0 i.e. dx kx = mg and displacement, x = mg k 12. The current i flowing in an inductor of inductance 100 mH is given by: i = 5 sin 100t amperes, where t is the time t in seconds. The voltage v across the inductor is given by: v = L di volts. dt Determine the voltage when t = 10 ms. di If i = 5 sin 100t= then (5)(100 = cos t ) 500 cos100t dt Voltage across inductor, v = L di = ( L)(500 cos100t ) dt When L = 100 mH and t = 10 ms, voltage, v = (100 ×10−3 )( 500 cos(100 ×10 ×103 ) ) = 50 cos 1 = 27.0 volts 914 © 2014, John Bird EXERCISE 226 Page 618 1. Differentiate with respect to x: x sin x dy If y = x sin x, then = dx ( x )( cos x ) + ( sin x )(1) = x cos x + sin x 2. Differentiate with respect to x: x 2 e 2 x dy If y = x 2 e 2 x ,= then dx ( x 2 )( 2 e2 x ) + ( e2 x )( 2 x ) = 2 x 2 e 2 x + 2 x e 2 x or 2 x e 2 x ( x + 1) 3. Differentiate with respect to x: x 2 ln x dy = If y = x 2 ln x , then dx ( x 2 ) 1 + ( ln x )( 2 x ) x = x + 2x ln x or x(1 + 2 ln x) 4. Differentiate with respect to x: 2x3 cos 3x If y = 2 x 3 cos 3 x , then dy =( 2 x3 )( −3sin 3 x ) + ( cos 3 x )( 6 x 2 ) dx = −6 x3 sin 3 x + 6 x 2 cos 3 x = 6 x 2 ( cos 3 x − x sin 3 x ) 5. Differentiate with respect to x: If y = x3 ln 3x 3 d y 3 1 3 1 = x 2 + ( ln 3 x ) x 2 x3 ln 3x = x 2 ln 3 x , then d x x 2 3 −1 = x2 + 1 3 1 3 1 x 2 ln 3x = x 2 + x 2 ln 3x 2 2 1 3 = x 2 1 + ln 3 x = 2 915 3 x 1 + ln 3 x 2 © 2014, John Bird 6. Differentiate with respect to x: e3t sin 4t dy If y = e3t sin 4= t , then dt ( e3t )( 4 cos 4t ) + ( sin 4t )( 3e3t ) = e3t ( 4 cos 4t + 3sin 4t ) 7. Differentiate with respect to θ: e4θ ln 3θ dy If y = e4θ ln 3θ, then = dθ ( e4θ ) 1 4θ + ( ln 3θ )( 4 e ) θ 1 = e 4θ + 4 ln 3θ θ 8. Differentiate with respect to t: et ln t cos t If y = et ln t cos t , then dy = dt 1 t + ( ln t )( e ) t ( et ln t )( − sin t ) + ( cos t ) ( et ) cos t + cos t ln t = et − ln t sin t + t 1 = et + ln t cos t − ln t sin t t 9. Evaluate di , correct to 4 significant figures, when t = 0.1, and i = 15 t sin 3t dt di Since i = 15t sin= 3t, then (15t )(3cos 3t ) + (sin 3t )(15) dt = 45t cos 3t + 15 sin 3t When t = 0.1, di = 45(0.1) cos 0.3 + 15 sin 0.3 dt (note 0.3 is radians) = 4.2990 + 4.4328 = 8.732, correct to 4 significant figures 10. Evaluate dz , correct to 4 significant figures, when t = 0.5, given that z = 2e3t sin 2t dt 916 © 2014, John Bird dz Since z = 2e3t sin 2t, then = (2 e3t )(2 cos 2t ) + (sin 2t )(6 e3t ) dt = 4 e3t cos 2t + 6 e3t sin 2t When t = 0.5, dz = 4 e1.5 cos1 + 6 e1.5 sin1 dt (note 1 is 1 radian) = 9.68587 + 22.62727 = 32.31, correct to 4 significant figures 917 © 2014, John Bird EXERCISE 227 Page 620 sin x x 1. Differentiate with respect to x: If y = sin x , then x d y ( x )( cos x ) − ( sin x )(1) = 2 dx ( x) = x cos x − sin x x2 2 cos 3x x3 2. Differentiate with respect to x: x 3 )( −6sin 3x ) − ( 2 cos 3 x )( 3 x 2 ) (= 2 ( x3 ) dy 2 cos 3x If y = , then = dx x3 = −6( x sin 3 x + cos 3 x) x4 dy 2x ,= then 2 dx x +1 x6 −6 ( x sin 3x + cos 3x ) x4 2x x2 + 1 3. Differentiate with respect to x: If y = or −6 x 2 ( x sin 3x + cos 3x ) ( x 2 + 1)( 2= ) − ( 2 x )( 2 x ) 2 ( x 2 + 1) 2 x2 + 2 − 4 x2 = 2 ( x 2 + 1) 2 − 2 x2 ( x 2 + 1) = x x If y = , then = cos x cos x 2(1 − x 2 ) ( x 2 + 1) 2 x cos x 4. Differentiate with respect to x: 1 2 2 dy = dx ( cos x ) 1 −1 x 2 − 2 ( x ) ( − sin x ) ( cos x ) 2 cos x + x sin x 2 x = cos 2 x 918 © 2014, John Bird 3 θ3 2sin 2θ 5. Differentiate with respect to θ: If y = 3 2 dy 3 θ3 3θ , then = = dθ 2sin 2θ 2sin 2θ ( 2sin 2θ ) 9 1 3 θ 2 − 3θ 2 ( 4 cos 2θ ) 2 ( 2sin 2θ ) 2 3 θ { 3sin 2θ − 4θ cos 2θ } 9 θ 2 sin 2θ − 12 θ 2 cos 2θ = = 4sin 2 2θ 4sin 2 2θ 1 6. Differentiate with respect to t: 3 ln 2t t ( t ) 1t − ( ln 2t ) 12 t = ( t) − If y = ln 2t dy ,= dt t 1 2 7. Differentiate with respect to x: 2 x e4 x , then sin x 1 2 1 −1 1 − − t 2 ln 2t 2 = t 2 t t 1 1 − ln 2t 2 1 1 1 1 1 − ln 2t 1 − ln 2t = 3 t3 2 t2 2 2 xe 4 x sin x d y ( sin x ) ( 2 x )( 4 e 4 x ) + ( e 4 x )( 2 ) − ( 2 x e 4 x )( cos x ) = 2 dx ( sin x ) = 8 x e 4 x sin x + 2 e 4 x sin x − 2 x e 4 x cos x sin 2 x = 2 e4 x {(1 + 4 x ) sin x − x cos x} sin 2 x 8. Find the gradient of the curve y = If y = − 2 = If y = t dy 2x then = gradient, 2 dx x −5 2x at the point (2, –4) x −5 2 − (2 x)(2 x) ( x 2 − 5) (2) = 2 ( x 2 − 5) At the point (2, –4), x = 2, hence gradient = 2 x 2 − 10 − 4 x 2 −10 − 2 x 2 = 2 2 ( x 2 − 5) ( x 2 − 5) −10 − 2(2) 2 −10 − 8 −18 = –18 = = 2 (4 − 5) 2 1 ( 22 − 5 ) 919 © 2014, John Bird 9. Evaluate If y = dy 2x2 + 3 at x = 2.5, correct to 3 significant figures, given y = ln 2 x dx dy 2x + 3 then = dx ln 2 x 2 dy When x = 2.5, = dx ( ln 2 x ) (4 x) − (2 x 2 + 3) ( ln 2 x ) 1 x 2 ( ln 5) (10) − [2(2.5)2 + 3] 1 2.5 16.09438 − 6.2 = 3.82, correct to 3 = 2 2.59029 ( ln 5) significant figures 920 © 2014, John Bird EXERCISE 228 Page 621 ( 2 x − 1) 1. Differentiate with respect to x: 6 dy 6 5 If y = ( 2 x − 1) then = 6 ( 2 x − 1) ( 2 ) dx dy 5 i.e. = 12 ( 2 x − 1) dx 2. Differentiate with respect to x: (2x3 – 5x)5 If y = ( 2 x3 − 5 x ) then 5 dy 4 = 5 ( 2 x3 − 5 x ) ( 6 x 2 − 5) dx 3. Differentiate with respect to θ: 2 sin(3θ – 2) dy If y = 2 sin(3θ – 2) then = 2 ( cos ( 3θ − 2 ) ) ( 3) dθ dy i.e. = 6 cos ( 3θ − 2 ) dθ 4. Differentiate with respect to α: 2 cos5 α dy If y = 2 cos5 α= then (2) ( 5cos 4 α )( − sin α ) dα 1 ( x3 − 2 x + 1) 5 = ( x3 − 2 x + 1) dy = −10 cos 4 α sin α dα 1 ( x − 2 x + 1)5 5. Differentiate with respect to x: If y = i.e. 3 −5 then −5 ( 3 x 2 − 2 ) dy −6 = −5 ( x3 − 2 x + 1) ( 3 x 2 − 2 ) = 6 dx ( x3 − 2 x + 1) = 5 ( 2 − 3x 2 ) ( x3 − 2 x + 1) 6 6. Differentiate with respect to t: 5e2t+1 If y = 5e2t+1 then dy = (5) ( e 2t +1 )( 2 ) dt i.e. dy = 10 e 2t +1 dt 921 © 2014, John Bird 7. Differentiate with respect to t: 2 cot(5t2 + 3) cos x then sin x If y = cot x = d y (sin x)(− sin x) − (cos x)(cos x) − ( sin 2 x + cos 2 x ) −1 = = = = − cosec 2 x dx sin 2 x sin 2 x sin 2 x Thus, if y = 2 cot ( 5t 2 + 3) , then dy = ( 2 ) − cos ec 2 ( 5t 2 + 3) (10t ) = −20t cosec2 ( 5t 2 + 3) dt 8. Differentiate with respect to y: 6 tan(3y + 1) dθ (6) ( sec 2 ( 3 y + 1) ) ( 3) If θ = 6 tan(3y + 1) = then dy dθ = 18sec 2 ( 3 y + 1) i.e. dy 9. Differentiate with respect to x: 2etan θ If y = 2 e tan θ , then dy = ( 2e tan θ ) sec 2 θ = 2sec 2 θ e tan θ dθ 10. Differentiate: θ sin(θ – θ= π π 3 ) with respect to θ, and evaluate, correct to 3 significant figures, when 2 π dy If y = θ sin θ − then = dθ 3 When θ = π 2 , (θ ) cos θ − π π + sin θ − (1) 3 3 d y π π π π π π π π = cos − + sin − = cos + sin dθ 2 6 6 2 3 2 3 2 = 1.360 + 0.5 = 1.86, correct to 3 significant figures 922 © 2014, John Bird 11. The extension, x metres, of an undamped vibrating spring after t seconds is given by: x = 0.54 cos(0.3t – 0.15) + 3.2 Calculate the speed of the spring, given by If x = 0.54 cos(0.3t – 0.15) + 3.2 then dx , when (a) t = 0, (b) t = 2 s dt dx = (0.54) [– sin(0.3t – 0.15)](0.3) + 0 dt = –0.162 sin(0.3t – 0.15) (a) When t = 0, speed of spring, (b) When t = 2 s, speed of spring, dx = –0.162 sin(–0.15) = 0.02421 m/s = 24.21 mm/s dt dx = –0.162 sin(0.45) = –0.07046 m/s = –70.46 mm/s dt 923 © 2014, John Bird EXERCISE 229 Page 622 1. If y = 3x4 + 2x3 – 3x + 2 find (a) d2 y d x2 (a) If y = 3x4 + 2x3 – 3x + 2 then dy d2 y = 12 x3 + 6 x 2 − 3 and = 36 x 2 + 12 x d x2 dx (b) (b) d3 y d x3 d3 y = 72 x + 12 d x3 2. (a) Given f(t) = 2 2 1 3 t – + – 5 t3 t t + 1 determine f ´´(t) (b) Evaluate f ´´(t) when t = 1 (a) f(t) = 1 2 2 1 3 2 2 −3 t − + − t += 1 t − t + 3t −1 − t 2 + 1 5 t3 t 5 f ′(t) = 4 1 −1 t + 3t −4 − 3t −2 − t 2 5 2 f ′′(t) = 4 12 6 1 4 1 −3 − 12t −5 + 6t −3 + t 2 = − + + 5 3 5 t t 5 4 4 t3 (b) When t = 1, f ′′(t) = 4 12 6 1 4 1 − + + = − 12 + 6 + = –4.95 5 3 3 5 (1) (1) 4 1 5 4 3. The charge q on the plates of a capacitor is given by q = CV e − t CR , where t is the time, C is the capacitance and R the resistance. Determine (a) the rate of change of charge, which is given by dq d2 q , (b) the rate of change of current, which is given by dt d t2 (a) If q = CV e (b) If − t CR dq V − t 1 − CRt e ,= (CV ) − = − e CR dt R CR dq V − t V − t d 2 q V 1 − t = − − e CR = e CR = − e CR , d t 2 R CR dt R CR 2 924 © 2014, John Bird 4. Find the second differential coefficient with respect to the variable: (a) 3 sin 2t + cos t (a) If y = 3 sin 2t + cos t and then dy = (3)(2 cos 2t ) − sin= t 6 cos 2t − sin t dx d2 y = (6)(– 2 sin 2t) – cos t = – 12 sin 2t – cos t or –(12 sin 2t + cos t) d x2 (b) If y = 2 ln 4θ then and (b) 2 ln 4θ dy 1 2 −1 = (2) = = 2θ dx θ θ d2 y 2 = −2θ −2 = − 2 dx θ2 5. Find the second differential coefficient with respect to the variable: (a) 2 cos2x (b) (2x – 3)4 (a) If y = 2 cos 2 x , dy = 4 cos x(− sin x) = −4sin x cos x dx d2 y = (−4sin x)(− sin x) + (cos x)(−4 cos x) = 4sin 2 x − 4 cos 2 x d x2 and = 4 ( sin 2 x − cos 2 x ) (b) If y = ( 2 x − 3) , 4 and dy =4(2 x − 3)3 (2) =8(2 x − 3)3 dx d2 y 2 = 24(2 x − 3) 2 (2) = 48 ( 2 x − 3) d x2 6. Evaluate f ´´(θ) when θ = 0 given f(θ) = 2 sec 3θ If f(θ) = 2 sec 3θ, then f ′(θ) = 6 sec 3θ tan 3θ and f ′′(θ) = ( 6sec 3θ )( 3sec 2 3θ ) + ( tan 3θ )(18sec 3θ tan 3θ ) = 18sec3 3θ + 18sec 3θ tan 2 3θ When θ = 0, f ′′(0) = 18 18 tan 2 0 18 18(0) = 18 + = + cos3 0 cos 0 1 1 925 © 2014, John Bird 7. Show that the differential equation If y = xe2x then d2 y dy –4 + 4y = 0 is satisfied when y = xe2x 2 dx dx dy =( x)(2 e 2 x ) + (e 2 x )(1) =2 x e 2 x + e 2 x dx d2 y = (2 x)(2 e 2 x ) + (e 2 x )(2) + 2 e 2 x = 4 x e 2 x + 4 e 2 x d x2 and dy d2 y –4 + 4y = ( 4 xe 2 x + 4e 2 x ) – 4( 2 x e 2 x + e 2 x ) + 4(xe2x) 2 dx dx = 4 xe 2 x + 4e 2 x – 8 x e 2 x − 4 e 2 x + 4xe2x =0 8. Show that, if P and Q are constants and y = P cos(ln t) + Q sin(ln t), then t 2 d2 y dy +t +y=0 2 dt dt y = P cos(ln t) + Q sin(ln t) − P sin(ln t ) + Q cos(ln t ) P Q dy = − sin(ln t ) + cos(ln t ) = t t t dt − P cos(ln t ) Q sin(ln t ) − (t ) − [ − P sin(ln t ) + Q cos(ln t ) ] (1) d y t t = t2 d t2 2 = − P cos(ln t ) − Q sin(ln t ) + P sin(ln t ) − Q cos(ln t ) t2 Hence, t 2 d2 y dy − P cos(ln t ) − Q sin(ln t ) + P sin(ln t ) − Q cos(ln t ) +t + y = (t 2 ) 2 dt dt t2 + (t) − P sin(ln t ) + Q cos(ln t ) + P cos(ln t) + Q sin(ln t) t = − P cos(ln t ) − Q sin(ln t ) + P sin(ln t ) − Q cos(ln t ) − P sin(ln t ) + Q cos(ln t ) + P cos(ln t) + Q sin(ln t) =0 926 © 2014, John Bird 9. The displacement s of a mass in a vibrating system is given by: s= natural frequency of vibration. Show that: If s= and (1 + t ) e−ω t (1 + t ) e−ω t where ω is the d2 s ds 0 + 2ω + ω 2s = 2 dt dt ds =+ (1 t ) ( −ω e −ωt ) + (e −ωt )(1) = −ω e −ωt − ωt e −ωt + e −ωt dt d2 y = +ω 2 e − ωt − [(ωt ) ( −ω e − ωt ) + ( e −ωt ) (ω )] − ω e −ωt d x2 = ω 2 e − ωt + ( ω 2 t e − ωt ) − ( ω e − ωt ) − ω e − ωt = ω 2 e − ωt + (ω 2t e − ωt ) − 2ω e −ωt Hence, d2 s ds ω 2 e − ωt + (ω 2t e − ωt ) − 2ω e −ωt + 2ω[−ω e −ωt − ωt e −ωt + e −ωt ] + ω 2 [(1 + t ) e −ωt ] + 2ω + ω 2s = 2 dt dt = ω 2 e − ωt + ω 2te −ωt − 2ω e −ωt − 2ω 2 e −ωt − 2ω 2te −ωt + 2ω e −ωt + ω 2 e −ωt + ω 2te −ωt =0 927 © 2014, John Bird
© Copyright 2025 Paperzz