x + 2 - HCC Learning Web

Math1314-TestReview2-Spring2016 Name__________________________________________________________
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Solve the problem.
1) Is the point (-5, -3) on the circle defined by (x + 2)2 + (y - 1)2 = 25
A) Yes
1)
B) No
Determine the center and radius of the circle.
2) (x - 2)2 + (y - 5)2 = 75
2)
A)
Center: (2, 5); Radius: 5 3
B) Center: (-2, -5); Radius: 75
C)
Center: (-2, -5); Radius: 5 3
D) Center: (2, 5); Radius: 75
Use the given information about a circle to find its equation.
3) center (-7, -9) and diameter 10
A) (x +
7)2
+ (y +
9)2
B) (x +
= 100
C) (x - 7)2 + (y - 9)2 = 25
3)
7)2
+ (y +
9)2
= 25
D) (x - 7)2 + (y - 9)2 = 100
1
Write the equation in standard form to find the center and radius of the circle. Then sketch the graph.
4) x2
+ y2 + 4x - 21 = 0
A) (x +
2)2
+
y2
4)
B) (x +
= 25
C) (x + 2)2 + y2 = 16
2)2
+
y2
= 25
D) (x + 2)2 + y2 = 16
2
For the given relation, write the domain, write the range, and determine if the relation defines y as a
function of x.
5)
5)
A) Domain: {-4, 1, 4}; Range: {-3, -1, 4}; not a function
B) Domain: {-3, -1, 4}; Range: {-4, 1, 4}; not a function
C) Domain: {-4, 1, 4}; Range: {-3, -1, 4}; function
D) Domain: {-3, -1, 4}; Range: {-4, 1, 4}; function
Determine whether the relation defines y as a function of x.
6)
6)
A) Not a function
B) Function
Evaluate the function for the indicated value, then simplify.
7) f (x) = -5x - 5; find f (a - 3), then simplify as much as possible.
A) a + 10
B) -5a - 8
C) -5a + 10
7)
D) a - 13
8) f (x) = -4x2 - 2x; find f (-4)
A) -66
8)
B) 264
C) 24
3
D) -56
Determine the x- and y-intercepts for the given function.
x-8
9) f (x) =
A) x-intercept: (64, 0); y-intercept: (0, -8)
B) x-intercept: (-8, 0); y-intercept: (0, 64)
C) x-intercept: (-8, 0); y-intercepts: (0, -64) and (0, 64)
D) x-intercepts: (-64, 0) and (64, 0); y-intercept: (0, -8)
9)
Determine the domain and range of the function.
10)
10)
A) Domain: (- , -1]; Range: [-4,
B) Domain: (-4,
C) Domain: [-4,
D) Domain: [-4,
)
]); Range [-3, - )
); Range: (- , -1)
); Range: (- , -1]
Write the domain in interval notation.
x-1
11) f(x) =
x-8
A) (- , -8)
C) (- , 1)
12) f(x) =
11)
B) (- , -1)
(-8, )
(1, )
D) (- , 8)
(-1, )
(8, )
8
12)
6-x
A) [6,
)
B) (- , 6]
C) (- , 6)
D) (6,
)
Find the slope of the ramp pictured below.
13)
13)
A) -88
B)
25
3
C) 88
4
D)
3
25
Determine the slope of the line passing through the given points.
1 3
3 3
,
and - ,
14)
2 2
2 5
A) m = -
9
10
B) m =
20
9
C) m =
9
20
14)
D) m =
Write the equation in slope-intercept form and determine the slope and y-intercept.
15) -4x = -3y - 12
4
4
A) y = - x + 12; slope: - ; y-intercept: (0, 12)
3
3
B) y = -
9
10
15)
4
4
x - 4; slope: - ; y-intercept: (0, -4)
3
3
C) y =
4
4
x - 4; slope: ; y-intercept: (0, -4)
3
3
D) y =
4
4
x + 12; slope: ; y-intercept: (0, 12)
3
3
Use the slope-intercept form to write an equation of the line that passes through the given points. Use
function notation where y = f(x).
16) (4, 5) and (2, 13)
16)
A) f(x) = -4x + 11
B) f(x) = -4x - 21
C) f(x) = 4x + 11
D) f(x) = -4x + 21
5
Find the slope of the secant line indicated with a dashed line.
17)
17)
A) m =
4
7
B) m =
7
4
C) m = -
7
4
D) m = -
Determine the average rate of change of the function on the given interval.
18) f(x) = 2x2 + 1 on [1, 3]
1
3
A)
B) 8
C)
D) -8
2
2
4
7
18)
Use the point-slope formula to write an equation of the line that passes through the given points. Write
the answer in slope-intercept form (if possible).
19) Passes through (-5, 2) and the slope is undefined.
19)
A) y = 2
B) y = x - 5
C) y = x + 2
D) x = -5
Write an equation of the line satisfying the given conditions. Write the answer in slope-intercept form.
20) The line passes through the point (6, -14) and has a slope of -3.
20)
A) y = 3x - 14
B) y = -3x - 14
C) y = -3x + 4
D) y = -3x + 6
Write an equation of the line satisfying the given conditions. Write the answer in standard form with no
fractional coefficients.
21) Passes through (-5, -1) and is parallel to the line defined by 3x - 5y = 9
21)
A) 3x - 5y = -6
B) 3x - 5y = -1
C) 3x - 5y = -5
D) 3x - 5y = -10
6
Use translations to graph the given function.
22) f (x) = |x| - 2
22)
A)
B)
C)
D)
7
Sketch the graph using transformations of a parent function (without a table of values).
23) r(x) =
23)
x+4
A)
B)
C)
D)
8
24) a(x) = (x - 1)2
24)
A)
B)
C)
D)
9
Use translations to graph the given function.
25) a(x) = x + 3 - 2
25)
A)
B)
C)
D)
10
Solve the problem.
26) Use the graph of y = f (x) below to graph y = 2f (x)
A)
B)
C)
D)
11
26)
Graph the function by applying an appropriate reflection.
27) f(x) = -
27)
x
A)
B)
C)
D)
12
Use transformations to graph the given function.
28) f(x) = -(x + 1)2 + 3
28)
A)
B)
C)
D)
Determine whether the graph of the equation is symmetric with respect to the x-axis, y-axis, origin, or
none of these.
29) y = -x4 - x2
29)
A) origin
B) x-axis
C) y-axis
Find f(-x) and determine whether f is odd, even, or neither.
30) f (x) = -5x5 + 4x3
-5x5
4x3 ; f
A)
f (-x) =
B)
f (-x) = 5x5 - 4x3 ; f is odd.
C)
f (-x) = 5x5 - 4x3 ; f is even.
D)
f (-x) = 5x5 - 4x3 ; f is neither odd nor even.
-
is odd.
13
D) none of these
30)
Use interval notation to write the intervals over which f is (a) increasing, (b) decreasing, and (c) constant.
31)
31)
A) a. (- , 2)
B) a. never increasing
(2, )
b. never decreasing
c. (-3, 1)
C) a. (-5, )
b. (- , -5)
c. never constant
b. (- , -3) (1, )
c. (-3, 1)
D) a. (- , -3) (1, )
b. never decreasing
c. (-3, 1)
14
Identify the location and value of any relative maxima or minima of the function.
32)
32)
A) At x = -5.7, the function has a relative minimum of 0.
At x = 0, the function has a relative maximum of 0.
At x = 5.7, the function has a relative minimum of 0.
B) At x = -4, the function has a relative minimum of 0.
At x = 0, the function has a relative maximum of 0.
At x = 4, the function has a relative minimum of 0.
C) At x = -4, the function has a relative minimum of -5.
At x = 0, the function has a relative maximum of 0.
At x = 4, the function has a relative minimum of -5.
D) At x = -4, the function has a relative minimum of -5.
At x = 4, the function has a relative minimum of -5.
Evaluate the function for the given value of x.
f
(2) = ?
33) f (x) = 4x, g(x) = |x - 6|,
g
A)
34)
Find
f
1
(2) =
g
2
B)
33)
f
1
(2) = g
2
C)
f
(2) = - 2
g
D)
f
(2) = 2
g
f (x) = 5x, g(x) = -4x2 - 7, (g - f )(x) = ?
34)
A)
(g - f )(x) = -4x2 - 5x + 7
B)
(g - f )(x) = -4x2 + 5x + 7
C)
(g - f )(x) = -4x2 - 5x - 7
D)
(g - f )(x) = -4x2 + 5x - 7
f(x + h) - f(x)
for the given function.
h
35)
f (x) = x2 + 2x.
A) 2x + 2
35)
B)
2xh + h2 + 2
C) 2x + h + 2
15
D) 1
Evaluate the function for the given value of x.
36) f (x) = x2 + 2x, g(x) = 5x - 1, (g f )(2) = ?
A) (g f )(2) = 39
C) (g f )(2) = 32
36)
B) (g
f )(2) = 72
D) (g f )(2) = 99
Refer to the values of k(x) and p(x) in the table, and evaluate the function for the given value of x.
37)
37)
x
-4
-1
3
4
k(x)
-5
4
-2
-1
p(x)
-4
3
-5
1
(p k)(-1)
A) -5
B) -2
C) -4
D) 1
Use the definition of a one-to-one function to determine if the function is one-to-one.
38) f (x) = |x + 1|
A) Yes
B) No
A one-to-one function is given. Write an expression for the inverse function.
39) f (x) = 5x3 - 7.
x+7
A) f -1(x) =
3
39)
x+7
B) f -1(x) =
5
5
x+7
C) f -1(x) = 3
x-7
D) f -1(x) =
5
40) f (x) =
38)
5
x+5
x-1
40)
5 + 1x
A) f -1(x) =
x+1
B) f -1(x) =
5 - 1x
C) f -1(x) =
x-1
D) f -1(x) =
x-5
x-1
x+5
x+1
16
Answer Key
Testname: UNTITLED1
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)
25)
26)
27)
28)
29)
30)
31)
32)
33)
34)
35)
36)
37)
38)
39)
40)
A
A
B
A
A
B
C
D
A
D
D
C
D
C
C
D
B
B
D
C
D
C
D
C
A
A
C
A
C
B
D
C
D
C
C
A
D
B
C
A
17