Proposal for Math in Cambridge Upper Schools 1 As identified by

ProposalforMathinCambridgeUpperSchools
•‹†‡–‹ˆ‹‡†„›‘—”–‡ƒ…Ї”•ǡ•–—†‡–•ǡƒ†–Їƒ„”‹†‰‡…‘—‹–›ǡ’”‹‘”‹–›‡‡†•–‘„‡’—–‘
•—’’‘”–‹‰•–—†‡–•ƒ––Ї‹”އ˜‡Ž‹‘—”‡™’’‡”ƒ’—•‡•Ǥƒ–Šǡ–Š‹•‡ƒ•‡‡–‹‰–Ї
ƒ…ƒ†‡‹…‡‡†•‘ˆƒ•–—†‡–’‘’—Žƒ–‹‘™Š‘•‡–ƒŽ‡–•ˆ‹–™‹–Š‹ƒ™‹†‡•’‡…–”—Ǥ
—””‡–Ž›ǡ‘—”‹††Ž‡•…Š‘‘Ž’”‘‰”ƒ’”‹ƒ”‹Ž›’Žƒ…‡••–—†‡–•‹Š‡–‡”‘‰‡‡‘—•ƒ–Š…Žƒ••”‘‘•Ǥ
‡ƒ…Ї”•‡‡––Ї™‹†‡”ƒ‰‡‘ˆ•–—†‡–ƒ…ƒ†‡‹…‡‡†•‹—Ž–‹’އ™ƒ›•ǤŽ–Š‘—‰Š‘—”–‡ƒ…Ї”•
Šƒ˜‡„‡‡•—……‡••ˆ—Ž™‹–Š‹–Š‹•‘†‡Žǡƒ›–‡ƒ…Ї”•Šƒ˜‡‡š’”‡••‡†ƒ‡‡†–‘’Žƒ…‡•–”—…–—”‡•‹
‘—”’”‘‰”ƒ–‘„‡––‡”•—’’‘”–ƒŽŽ•–—†‡–•‹‡ƒ…Š…Žƒ••”‘‘Ǥ
•ƒ”‡•—Ž–ǡ–Їˆ‘ŽŽ‘™‹‰’”‘’‘•ƒŽ…ƒŽŽ•ˆ‘”–Ї‹…”‡ƒ•‹‰‹…‘”’‘”ƒ–‹‰‘ˆˆŽ‡š‹„އ‰”‘—’‹‰‹–‘
‹††Ž‡•…Š‘‘Žƒ–Š…Žƒ••”‘‘•ǡ™‹–ЖЇ‰‘ƒŽ‘ˆ…‘’އ–‹‰ƒŽ‰‡„”ƒͳ…‘—”•‡‹ͺ–Љ”ƒ†‡Ǥ
Grade8
Grade7
7FlexiblyGroupedUnits
4FlexiblyGroupedUnits
Grade6
”ƒ†‡ͺމ‡„”ƒͳ
ExtendedMathBlock
ƒ–‹‘•ƒ†”‘’‘”–‹‘•
—…–‹‘•
—…–‹‘•
ȋͳ—‹–Ȍ
”ƒ†‡͸ƒ–Š
—„‡”•
—„‡”•
𒑐‡–•
𒑐‡–•
”ƒ†‡͹
”ƒ†‡ͺ
𖇐•‹‘Ž‘…
ƒ–Š
ƒ–Š
ƒ–ƒ
ƒ–ƒ
ȋͶ—‹–•Ȍ
ȋͶ—‹–•Ȍ
𖇐•‹‘
𖇐•‹‘
“—ƒ–‹‘•
“—ƒ–‹‘•
—’’‘”–
ŠƒŽŽ‡‰‡
›•–‡•
›•–‡•
‡‘‡–”›Ƭ”‘„ƒ„‹Ž‹–›
ȋ͵—‹–•Ȍ
—ƒ†”ƒ–‹…•
‹‹Žƒ”‹–›
މ‡„”ƒͳ‘‘”•
މ‡„”ƒͳ
or
‡‘‡–”›
ȋ‘ŽŽ‡‰‡”‡’‘”
‘‘”•
‘‘”•Ȍ
DetailsoftheProposal:
Grade6
ŽŽ•–—†‡–•‡–‡”‹‰–Ї’’‡”ƒ’—•‹
”ƒ†‡͸™‹ŽŽ„‡‡”‘ŽŽ‡†‹ƒ‘Ǧ‰”ƒ†‡Ž‡˜‡Ž
”ƒ†‡͸
…Žƒ••ǤŠ‹•‘†‡Ž‹•”‡…‘‡†‡†ˆ‘”–™‘”‡ƒ•‘•Ǥ‹”•–ǡƒ••–—†‡–•™‹ŽŽ„‡ƒ””‹˜‹‰ƒ–‡ƒ…Š’’‡”
ƒ’—•ǡ‡š…‡’–ˆ‘”–Ї‹‰‘•ǡˆ”‘–Š”‡‡†‹ˆˆ‡”‡–ˆ‡‡†‡”•…Š‘‘Ž•ǡ–Š‹•‘†‡Ž™‹ŽŽƒŽŽ‘™‡ƒ…Š
’’‡”ƒ’—•–‘†‡˜‡Ž‘’ƒ͸–Љ”ƒ†‡…‘—‹–›ǡ…”‡ƒ–‹‰ƒ•‘‘–Ї”–”ƒ•‹–‹‘ˆ‘”‡ƒ…Š•–—†‡–
ˆ”‘–Ї‹”‡Ž‡‡–ƒ”›•…Š‘‘ŽǤ‡…‘†ǡ–Ї
”ƒ†‡͸”ƒ•‹–‹‘ƒŽ”‘‰”ƒǡƒ•‹†‡–‹ˆ‹‡†‹‘˜ƒ–‹‘
‰‡†ƒ—’†ƒ–‡•ǡ™‹ŽŽ‹…Ž—†‡‡š–‡†‡†…Žƒ••’‡”‹‘†•ˆ‘”͸–Љ”ƒ†‡ƒ–Š…Žƒ••‡•ǤŠ‹•‡š–‡†‡†–‹‡
™‹ŽŽŠ‡Ž’–‡ƒ…Ї”•ˆ—ŽŽ›‡‡––Ї•—’’‘”–ƒ†…ŠƒŽŽ‡‰‡…‘–‡–‡‡†•‘ˆ–Ї‹”•–—†‡–•ǡ™Š‹Ž‡•–‹ŽŽ
ˆ‘…—•‹‰‘–Ї‡‘–‹‘ƒŽƒ†•‘…‹ƒŽ‡‡†•‘ˆ•–—†‡–•ǤŠƒŽŽ‡‰‡…‘–‡–™‹ŽŽˆ‘…—•‘
‘’’‘”–—‹–‹‡•ǡ’”‘„އ•‘Ž˜‹‰ǡƒ†Ž‘‰‹…’”‘„އ•ǡƒ•™‡ŽŽƒ•”‡Žƒ–‡†͹–Љ”ƒ†‡ƒ–‡”‹ƒŽˆ‘”‡ƒ…Š͸–Š
‰”ƒ†‡—‹–Ǥ
Grade7and8FlexibleGroupingModel
Ž–Š‘—‰Š–Š‹•‘†‡ŽŠ‡Ž’•‡‡–•–—†‡–…‘–‡–‡‡†•‹͸–Љ”ƒ†‡ǡ–‡ƒ…Ї”•Šƒ˜‡‹†‡–‹ˆ‹‡†‘”‡‹•
‡‡†‡†ˆ‘”‡‡–‹‰–Ї‡‡†•‘ˆ‘—”͹–Šƒ†ͺ–Љ”ƒ†‡•–—†‡–•Ǥ
ͳ
ProposalforMathinCambridgeUpperSchools
Grade7
͹–Љ”ƒ†‡ǡ•–—†‡–•™‹ŽŽŠƒ˜‡–Ї‘’’‘”–—‹–›–‘…‘’އ–‡Ͷ—‹–•‘ˆͺ–Љ”ƒ†‡ƒ–‡”‹ƒŽ™‹–Š‹–Ї
›‡ƒ”Ǥ––Ї•–ƒ”–‘ˆ–Ї›‡ƒ”ǡ•–—†‡–•™‹ŽŽ‡‡–‹Š‡–‡”‘‰‡‡‘—•‰”‘—’‹‰•–‘…‘’އ–‡™‘”‹
ƒ–‹‘•ƒ†”‘’‘”–‹‘•Ǥ‘”–Ї‡š–Ͷ—‹–•ǡ•–—†‡–•™‹ŽŽ‡‡–‹Š‘‘‰‡‡‘—•‰”‘—’‹‰•ǤЇ•‡
‰”‘—’‹‰•™‹ŽŽ„‡†‡–‡”‹‡†—‹–Ǧ„›Ǧ—‹–„ƒ•‡†‘–Ї”‡•—Ž–•‘ˆƒ’”‡Ǧƒ••‡••‡–ˆ‘”‡ƒ…Š—‹–Ǥ
–—†‡–••…‘”‹‰ͺͲΨ‘”Š‹‰Š‡”™‹ŽŽ„‡ƒ„އ–‘…‘’އ–‡”‡Žƒ–‡†ͺ–Љ”ƒ†‡…‘–‡–ˆ‘”–Šƒ–•’‡…‹ˆ‹…
—‹–Ǥ–—†‡–•‘–•…‘”‹‰ͺͲΨ™‹ŽŽ™‘”‘͹–Љ”ƒ†‡ƒ–‡”‹ƒŽǤˆ–‡”–ЇͶ—‹–•ǡ•–—†‡–•™‹ŽŽ‡‡–
„ƒ…‹Š‡–‡”‘‰‡‡‘—•‰”‘—’•–‘…‘’އ–‡͵—‹–•‘ˆ͹–Љ”ƒ†‡ƒ–‡”‹ƒŽ‘
‡‘‡–”›ȋ™Š‹…Š™‹ŽŽ
…‘–ƒ‹͹–Šƒ†ͺ–Љ”ƒ†‡ƒ–‡”‹ƒŽ–ƒ—‰Š––‘ƒŽŽ•–—†‡–•Ȍƒ†”‘„ƒ„‹Ž‹–›ȋ™Š‹…Š‹•—…Š‘”‡
”‘„—•–‹–Ї‡™ˆ”ƒ‡™‘”ƒ†‘ˆˆ‡”•…ŠƒŽŽ‡‰‡–‘ƒŽŽ•–—†‡–•ȌǤ
ˆ–‡”–Ї‹”͹–Љ”ƒ†‡›‡ƒ”ǡ•–—†‡–•™‹ŽŽŠƒ˜‡–Ї‘’’‘”–—‹–›–‘–ƒ‡•—‡”•…Š‘‘Ž…‘—”•‡•Ǥ
‘†—އ•‘ˆ‹•–”—…–‹‘™‹ŽŽ„‡…”‡ƒ–‡†–‘•—’’‘”–•–”—‰‰Ž‹‰•–—†‡–•ƒ†•–—†‡–•™ƒ–‹‰ƒ‘–Ї”
‘’’‘”–—‹–›–‘‡‰ƒ‰‡‹ͺ–Љ”ƒ†‡ƒ–‡”‹ƒŽ‘–…‘’އ–‡††—”‹‰–Ї›‡ƒ”Ǥ
Grade8
ͺ–Љ”ƒ†‡ǡ•–—†‡–•™‹ŽŽŠƒ˜‡–Ї‘’’‘”–—‹–›–‘…‘’އ–‡ͺ—‹–•‘ˆŽ‰‡„”ƒͳƒ–‡”‹ƒŽ™‹–Š‹–Ї
›‡ƒ”Ǥ––Ї•–ƒ”–‘ˆ–Ї›‡ƒ”ǡ•–—†‡–•™‹ŽŽ‡‡–‹Š‘‘‰‡‡‘—•‰”‘—’‹‰•ǡ™Š‹…Š™‹ŽŽ„‡
†‡–‡”‹‡†—‹–Ǧ„›Ǧ—‹–ǡ„ƒ•‡†‘–Ї”‡•—Ž–•‘ˆƒ’”‡Ǧƒ••‡••‡–ˆ‘”‡ƒ…Š—‹–Ǥ–—†‡–••…‘”‹‰
ͺͲΨ‘”Š‹‰Š‡”™‹ŽŽ„‡ƒ„އ–‘…‘’އ–‡”‡Žƒ–‡†Ž‰‡„”ƒͳ…‘–‡–ˆ‘”–Šƒ–•’‡…‹ˆ‹…—‹–Ǥ–—†‡–•‘–
•…‘”‹‰ͺͲΨ™‹ŽŽ™‘”‘ͺ–Љ”ƒ†‡ƒ–‡”‹ƒŽǤ
ˆ–‡”–Ї‹”ͺ–Љ”ƒ†‡›‡ƒ”ǡ•–—†‡–•™‹ŽŽŠƒ˜‡–Ї‘’’‘”–—‹–›–‘–ƒ‡•—‡”•…Š‘‘Ž…‘—”•‡•Ǥ
‘†—އ•‘ˆ‹•–”—…–‹‘™‹ŽŽ„‡…”‡ƒ–‡†–‘•—’’‘”–•–”—‰‰Ž‹‰•–—†‡–•ƒ†•–—†‡–•™ƒ–‹‰ƒ‘–Ї”
‘’’‘”–—‹–›–‘‡‰ƒ‰‡‹Ž‰‡„”ƒͳƒ–‡”‹ƒŽ‘–…‘’އ–‡††—”‹‰–Ї›‡ƒ”Ǥ
–—†‡–•™‹ŽŽ„‡”‡…‘‡†‡†ˆ‘”’Žƒ…‡‡–‹‡‹–Ї”މ‡„”ƒͳȋ‘ŽŽ‡‰‡”‡’އ˜‡Ž‘”‘‘”•
އ˜‡ŽȌ‘”
‡‘‡–”›ȋ‘‘”•އ˜‡Ž‘Ž›Ȍ‹
”ƒ†‡ͻǤŽŽ•–—†‡–•…ƒƒ’’Ž›–‘–ƒ‡ƒƒ••‡••‡––‘
†‡–‡”‹‡–Ї‹”ƒ•–‡”›‘ˆŽ‰‡„”ƒͳ…‘–‡–„‡ˆ‘”‡–Ї‡’–‡„‡”‘ˆ–Ї‹”ͻ–Љ”ƒ†‡›‡ƒ”Ǥ–—†‡–•
•…‘”‹‰ͺͲΨ‘”Š‹‰Š‡”™‹ŽŽ„‡’Žƒ…‡†‹
‡‘‡–”›‘‘”•ȋͳͲ–Љ”ƒ†‡ƒ–ŠȌǡ„›’ƒ••‹‰Ž‰‡„”ƒͳ
ȋͻ–Љ”ƒ†‡ƒ–ŠȌ‹Š‹‰Š•…Š‘‘ŽǤ
SpecialEducation

”ƒ†‡͸ǡ‹†‡–‹ˆ‹‡†•–—†‡–•–Šƒ–ƒ›‡‡†•—’’‘”–‹ƒ–Š™‹ŽŽ”‡…‡‹˜‡–Ї‹”•‡”˜‹…‡•‹–Ї
”ƒ†‡͸ƒ–Єޑ…ƒ†‹–Ї𖇐•‹‘Ž‘…Ǥ—”‹‰–Ї𖇐•‹‘Ž‘…ǡƒ‰‡‡”ƒŽ‡†—…ƒ–‹‘
–‡ƒ…Ї”ƒ†ƒ•’‡…‹ƒŽ‡†—…ƒ–‹‘–‡ƒ…Ї”™‹ŽŽ™‘”–‘‰‡–Ї”–‘‹–”‘†—…‡ƒŽ‡••‘–‘–Ї™Š‘އ‰”‘—’Ǥ
—”‹‰–Šƒ–„Ž‘…ǡ–Ї•’‡…‹ƒŽ‡†—…ƒ–‹‘–‡ƒ…Ї”™‹ŽŽ™‘”™‹–Š‹†‡–‹ˆ‹‡†•–—†‡–•–‘ƒ††”‡••‡ƒ…Š
•–—†‡–ǯ•‰‘ƒŽ•ǤЇ–™‘–‡ƒ…Ї”•™‹ŽŽ„‡‰‹˜‡…‘‘…‘ŽŽƒ„‘”ƒ–‹‘–‹‡–‘’Žƒ–Ї•‡
‘’’‘”–—‹–‹‡•Ǥ

”ƒ†‡͹ƒ†ͺǡ‹†‡–‹ˆ‹‡†•–—†‡–•™‹ŽŽ”‡…‡‹˜‡–Ї‹”•‡”˜‹…‡•™‹–Š‹–Ї‹”ƒ–Š…Žƒ••”‘‘ǤЇ
•’‡…‹ƒŽ‡†—…ƒ–‹‘–‡ƒ…Ї”™‹ŽŽ„‡‰‹˜‡…‘‘’Žƒ‹‰–‹‡–‘…‘ŽŽƒ„‘”ƒ–‡™‹–ЖЇ
”ƒ†‡͹ƒ†ͺ
”‡‰—Žƒ”‡†—…ƒ–‹‘–‡ƒ…Ї”–‘‡•—”‡–Šƒ––Ї”‡“—‹”‡‡–•‘ˆ‡ƒ…Š•–—†‡–ǯ•‹•‡–Ǥ
ʹ
ProposalforMathinCambridgeUpperSchools
Staffing
ƒ…Š’’‡”ƒ’—•™‹ŽŽ„‡ƒŽŽ‘––‡†͵ƒ–Š–‡ƒ…Ї”•Ǥƒ…Š–‡ƒ…Ї”™‹ŽŽ„‡‡š’‡…–‡†–‘–‡ƒ…Š
ƒ’’”‘š‹ƒ–‡Ž›Ͷ„Ž‘…•‘ˆƒ–Їƒ…Іƒ›Ǥ
x ‡–‡ƒ…Ї”™‹ŽŽ„‡”‡•’‘•‹„އˆ‘”͸–Љ”ƒ†‡ƒ–ŠǤЇ›™‹ŽŽ„‡‹…Šƒ”‰‡‘ˆ‹•–”—…–‹‘ˆ‘”
–Ї
”ƒ†‡͸ƒ–Š…Žƒ••‡•ǡƒ•™‡ŽŽƒ•’Žƒ‹‰ƒ†…‘ŽŽƒ„‘”ƒ–‹‘ˆ‘”–Ї𖇐•‹‘Ž‘…ǤЇ›
ƒ›‘”ƒ›‘–„‡‹…Šƒ”‰‡‘ˆ‹•–”—…–‹‘‘ˆ–Ї•‡…Žƒ••‡•Ǥ
x ‡–‡ƒ…Ї”™‹ŽŽ„‡”‡•’‘•‹„އˆ‘”
”ƒ†‡͹ƒ†ͺƒ–ŠǤ‘”–Ї‹”
”ƒ†‡͹ƒ••‹‰‡–ǡ–Ї›
™‹ŽŽ–‡ƒ…ЖЇ
”ƒ†‡͹…Žƒ••–Šƒ–‹…Ž—†‡•™‹–ŠͶ—‹–•‘ˆ
”ƒ†‡ͺ…‘–‡–Ǥ‘”–Ї‹”
”ƒ†‡ͺ
ƒ••‹‰‡–ǡ–Ї›™‹ŽŽ–‡ƒ…ЖЇˆ—ŽŽ
”ƒ†‡ͺƒ–Š…Žƒ••Ǥ
x ‡–‡ƒ…Ї”™‹ŽŽ„‡”‡•’‘•‹„އˆ‘”
”ƒ†‡͹ƒ–Šƒ†Ž‰‡„”ƒͳǤ‘”–Ї‹”
”ƒ†‡͹
ƒ••‹‰‡–ǡ–Ї›™‹ŽŽ–‡ƒ…ЖЇˆ—ŽŽ
”ƒ†‡͹ƒ–Š…Žƒ••Ǥ‘”–Ї‹”މ‡„”ƒͳƒ••‹‰‡–ǡ–Ї›
™‹ŽŽ–‡ƒ…ЖЇމ‡„”ƒͳ…‘–‡––‘ͺ–Љ”ƒ†‡”•Ǥ
Block
Grade6
MathTeacher
Grade7and8
MathTeacher
Grade7Mathand
AlgebraITeacher
1
”ƒ†‡͸ƒ–Š
”ƒ†‡͹
ȋ™‹–ŠͶ—‹–•‘ˆ
”ƒ†‡ͺȌ
”ƒ†‡͹ƒ–Š
2
”ƒ†‡͸ƒ–Š
”ƒ†‡͹
ȋ™‹–ŠͶ—‹–•‘ˆ
”ƒ†‡ͺȌ
”ƒ†‡͹ƒ–Š
3
”ƒ†‡͸ƒ–Š
”ƒ†‡ͺƒ–Š
މ‡„”ƒͳ
4
”ƒ†‡͸ƒ–Š
”ƒ†‡ͺƒ–Š
މ‡„”ƒͳ
GeneralNotesAboutThisProposal:
x Š‹•’”‘’‘•ƒŽǡ‘”ƒ›‘†‹ˆ‹…ƒ–‹‘‘ˆ–Š‹•’”‘’‘•ƒŽǡ•Š‘—ކƒ’’Ž›–‘’”‘‰”ƒ‹‰ƒ–ƒŽŽˆ‘—”
’’‡”ƒ’—•‡•ƒ†–Ї‹‰‘•…Š‘‘ŽǤ
x ••–—†‡–•…‘’އ–‡‡ƒ…Š…‘—”•‡ǡ™Š‡–Ї”–Ї›…‘’އ–‡ƒ•—‡”’”‘‰”ƒ‘”‘–ǡ–Ї›™‹ŽŽ
„‡”‡“—‹”‡†–‘…‘’އ–‡ƒ•—‡”ƒ–Š’ƒ…‡–ƒ––Ї‡†‘ˆͷ–Šǡ͸–Šǡ͹–Šǡƒ†ͺ–Љ”ƒ†‡•ǤŠ‹•
’ƒ…‡–™‹ŽŽ…‘–ƒ‹™‘”–Šƒ–•–—†‡–•—•–•–—†›ƒ†…‘’އ–‡‘˜‡”–Ї•—‡”ƒ†•—„‹––‘
–Ї‹”–‡ƒ…Ї”‹‡’–‡„‡”ǤŠ‹•™‘”™‹ŽŽ’”‡’ƒ”‡•–—†‡–•ˆ‘”–Ї”‹‰‘”‘ˆ–Ї‡š–›‡ƒ”ǯ•
…‘—”•‡ǡƒ•™‡ŽŽƒ•Їޒ–‡ƒ…Ї”•‹†‡–‹ˆ›–Ї…ŠƒŽŽ‡‰‡•ƒ†•–”‡‰–Š•‘ˆ–Ї‹”‹…‘‹‰•–—†‡–•Ǥ
x —”‹‰–Ї›‡ƒ”ǡ•—’’‘”–•™‹ŽŽ„‡…”‡ƒ–‡†‹–Їˆ‘”‘ˆƒˆ–‡”•…Š‘‘Ž’”‘‰”ƒ•ǡƒ†’‘••‹„Ž›
ƒ–—”†ƒ›’”‘‰”ƒ•ǡ–‘…‘–‹—‡–‘‡‡––Ї…ŠƒŽŽ‡‰‡•ƒ†•–”‡‰–Š•‘ˆ‡ƒ…Š•–—†‡–ǤŠ‹•
•—’’‘”–™‹ŽŽ„‡‘ˆˆ‡”‡†‹ƒ††‹–‹‘–‘–Ї…Žƒ••”‘‘‹•–”—…–‹‘ǤЇ•‡•—’’‘”–•™‹ŽŽ„‡
†‡–‡”‹‡†„›–Ї‹††Ž‡•…Š‘‘Ž•–ƒˆˆ‹–ЇʹͲͳͳǦʹͲͳʹ•…Š‘‘Ž›‡ƒ”ǡ„—–…‘—ކ‹…Ž—†‡
•—’’‘”–…Žƒ••‡•ǡƒ–ŠŽ›’‹ƒ†‡‡–‹‰•ǡƒ†™‘”‘ȋ…‹‡…‡ǡ‡…А‘Ž‘‰›ǡ
‰‹‡‡”‹‰ǡƒ†ƒ–Їƒ–‹…•Ȍ’”‘Œ‡…–•ǡˆ‘…—•‹‰‘…ƒ”‡‡”Ǧ‘”‹‡–‡†‹–‡”†‹•…‹’Ž‹ƒ”›™‘”
™‹–Š…‹‡…‡–‡ƒ…Ї”•Ǥ
͵
ProposalforMathinCambridgeUpperSchools
Grade7FlexibleGroupingsModel
Unit1:
VariablesandPatterns(IntroducingAlgebra)
CoreContent
RatiosandProportions
͹ǤǤʹ
Unit2:
Core:–”‡–…Š‹‰ƒ†Š”‹‹‰ȋ†‡”•–ƒ†‹‰‹‹Žƒ”‹–›Ȍ
Enrichment:ƒŽ‡‹†‘•…‘’‡•ǡ—„…ƒ’•ǡƒ†‹””‘”•ȋ›‡–”›ƒ†”ƒ•ˆ‘”ƒ–‹‘•Ȍ
CoreContent
EnrichmentContent
Similarity(TrianglesandScaleDrawings)
Similarity
andAngleMeasures
ͺǤ
ǤͳǡͺǤ
ǤʹǡͺǤ
Ǥ͵ǡͺǤ
ǤͶǡͺǤ
Ǥͷ
͹Ǥ
Ǥͳǡ͹Ǥ
Ǥʹǡ͹Ǥ
Ǥͷ
Unit3:
Core:‘’ƒ”‹‰ƒ†…ƒŽ‹‰ȋƒ–‹‘ǡ”‘’‘”–‹‘ǡƒ†‡”…‡–Ȍ
Enrichment:Š‹‹‰‹–Šƒ–Їƒ–‹…ƒŽ‘†‡Ž•ȋ‹‡ƒ”ƒ†˜‡”•‡ƒ”‹ƒ–‹‘•Ȍ
CoreContent
EnrichmentContent
AnalyzeProportionalRelationships
ComparingProportionalRelationshipswith
͹ǤǤͳǡ͹ǤǤ͵
LinesandLinearEquations
ͺǤǤͷǡͺǤǤ͸
Unit4:
Core:……‡–—ƒ–‡–Ї‡‰ƒ–‹˜‡ȋ–‡‰‡”•ƒ†ƒ–‹‘ƒŽ—„‡”•Ȍ
Enrichment:ʹͺ–Š
”ƒ†‡‘‘‘”‡—’’އ‡–•
CoreContent
EnrichmentContent
OperationsonRationalNumbers
RationalandIrrationalNumbers
͹ǤǤͳǡ͹ǤǤʹǡ͹ǤǤ͵
ͺǤǤͳǡͺǤǤʹ
ExponentsandRoots
ͺǤǤͳǡͺǤǤʹ
ScientificNotation
ͺǤǤ͵ǡͺǤǤͶ
Unit5:
Core:‘˜‹‰–”ƒ‹‰Š–Їƒ†ȋ‹‡ƒ”‡Žƒ–‹‘•Š‹’•Ȍ
Enrichment:ƒ›–‹–Š›„‘Ž•ȋƒ‹‰‡•‡‘ˆ›„‘Ž•Ȍ
CoreContent
EnrichmentContent
GenerateEquivalentExpressionsandSolve
SolvingLinearEquations
WordProblems
ͺǤǤ͹
͹ǤǤͳǡ͹ǤǤʹǡ͹ǤǤ͵ǡ͹ǤǤͶ
Ͷ
ProposalforMathinCambridgeUpperSchools
Unit6:
FillingandWrapping(ThreeǦDimensionalMeasurement)
CoreContent
SurfaceAreaandVolume
͹Ǥ
Ǥ͵ǡ͹Ǥ
ǤͶǡ͹Ǥ
Ǥ͸ǡǤ͹Ǥ
Ǥ͹
Extension:ͺǤ
Ǥͻ
Unit7:
DataDistributions(DescribingVariabilityandComparingGroups)
CoreContent
Statistics
͹ǤǤͳǡ͹ǤǤʹǡ͹ǤǤ͵ǡ͹ǤǤͶ
Unit8:
WhatDoYouExpect?(ProbabilityandExpectedValue)
CoreContent
Probability
͹ǤǤͷǡ͹ǤǤ͸ǡ͹ǤǤ͹ǡ͹ǤǤͺ
ͷ
ProposalforMathinCambridgeUpperSchools
Grade8FlexibleGroupingsModel
ȋModelingstandardstobeconsideredthroughoutAlgebra1:N.Q.1,N.Q.2,N.Q.3,MA.N.Q.3aȌ
Unit1:
Core:Š‹‹‰‹–Šƒ–Їƒ–‹…ƒŽ‘†‡Ž•ȋ‹‡ƒ”ƒ†˜‡”•‡ƒ”‹ƒ–‹‘Ȍ
Algebra1:ʹͲͲͶމ‡„”ƒͳǡŠƒ’–‡”ͷ
CoreContent
Algebra1Content
ComparingProportionalRelationshipswith BuildingFunctions
LinesandLinearEquations
ǤǤͳǡǤǤʹǡǤǤ͵ǡǤǤͶ
ͺǤǤͷǡͺǤǤ͸
AbsoluteValueandStepFunctions
Functions
ǤǤ͹„
ͺǤǤͳǡͺǤǤʹǡͺǤǤ͵ǡͺǤǤͶǡͺǤǤͷ
FunctionsandFunctionNotation
ǤǤͳǡǤǤʹǡǤǤ͵
Unit2:
Core:‘‘‹‰ˆ‘”›–Šƒ‰‘”ƒ•ȋЇ›–Šƒ‰‘”‡ƒŠ‡‘”‡Ȍ
Algebra1:ʹͲͲͶމ‡„”ƒͳǡŠƒ’–‡”•ͺƬͳͳ
CoreContent
Algebra1Content
IrrationalNumbers
RationalExponents
ͺǤǤͳǡͺǤǤʹ
ǤǤͳǡǤǤʹ
SquareandCubeRoots
PropertiesofRationalandIrrational
ͺǤǤʹ
Numbers
PythagoreanTheorem
ǤǤ͵
ͺǤ
Ǥ͸ǡͺǤ
Ǥ͹ǡͺǤ
Ǥͺ
Unit3:
Core:ʹ‘‘‘”‡—’’އ‡–•
Algebra1:
”‘™‹‰ǡ
”‘™‹‰ǡ
”‘™‹‰ȋ𒑐‡–‹ƒŽ‡Žƒ–‹‘•Š‹’•Ȍ
‘”ʹͲͲͶމ‡„”ƒͳǡŠƒ’–‡”•͸Ƭͺ
CoreContent
Algebra1Content
PropertiesofExponents
PropertiesofExponents
ͺǤǤͳ
ǤǤ͵…
ScientificNotation
CompareLinearandExponential
ͺǤǤ͵ǡͺǤǤͶ
Relationships
ǤǤͳǡǤǤʹǡǤǤ͵ǡǤǤͷ
SolveEquationsGraphically
ǤǤͳͲǡǤǤͳͳ
InterpretLinearModels
ǤǤ͸ǡǤǤ͹ǡǤǤͺǡǤǤͻ
FeaturesofaGraph
ǤǤͶǡǤǤͷǡǤǤ͸ǡǤǤ͹ƒǡǤǤͺ„ǡǤǤͻǡ
ǤǤǤͳͲ
GraphExponentialFunctions
ǤǤ͹‡
͸
ProposalforMathinCambridgeUpperSchools
Unit4:
Core:ƒ’އ•ƒ†‘’—Žƒ–‹‘•ȋƒ–ƒƒ†–ƒ–‹•–‹…•ȌƬ‘‘‘”‡—’’އ‡–•
Algebra1:ʹͲͲͶމ‡„”ƒͳ‡…–‹‘ʹǤ͹Ƭ—’’އ‡–ƒŽƒ–‡”‹ƒŽ•
CoreContent
Algebra1Content
PatternsofAssociations
InterpretingData
ͺǤǤͳǡͺǤǤʹǡͺǤǤ͵ǡͺǤǤͶ
ǤǤͳǡǤǤʹǡǤǤ͵ǡǤǤͶǡǤǤͷ
Unit5:
Core:ƒ›–‹–Š›„‘Ž•ȋƒ‹‰‡•‡‘ˆ›„‘Ž•Ȍ
Algebra1:ʹͲͲͶމ‡„”ƒͳŠƒ’–‡”ʹƬ‡…–‹‘•ͳǤ͹ǡͳǤͺǡͻǤͳƬ—’’އ‡–ƒŽƒ–‡”‹ƒŽ
CoreContent
Algebra1Content
SolvingLinearEquations
InterpretLinearExpressions
ͺǤǤ͹
ǤǤͳ
OperationsonPolynomials
ǤǤͳ
CreateEquations
ǤǤͳǡǤǤʹǡǤǤ͵
SolveLinearEquations
ǤǤͶǡǤǤͳǡǤǤ͵
Unit6:
Core:Š‡Šƒ’‡•‘ˆŽ‰‡„”ƒȋ‹‡ƒ”›•–‡•ƒ†‡“—ƒŽ‹–‹‡•Ȍ
Algebra1:ʹͲͲͶމ‡„”ƒͳŠƒ’–‡”͵Ƭ͹
CoreContent
Algebra1Content
SolvingSystemsofLinearEquations
SolveSystemsofLinearEquations
ͺǤǤͺ
AlgebraicallyandGraphically
ͺǤǤͺǡǤǤͷǡǤǤ͸ǡǤǤ͹
SolveLinearInequalitiesAlgebraicallyand
Graphically
ǤǤ͵ǡǤǤͳͲǡǤǤͳͳǡǤǤͳʹ
Unit7:
Core:ƒŽ‡‹†‘•…‘’‡•ǡ—„…ƒ’•ǡƒ†‹””‘”•
Algebra1:ʹͲͲͶމ‡„”ƒͳŠƒ’–‡”ͻƬͳͲ‘””‘‰•ǡއƒ•ǡƒ†ƒ‹–‡†—„‡•
CoreContent
Algebra1Content
CongruenceandSimilarity
SolveQuadraticEquations(factoring,
ͺǤ
ǤͳǡͺǤ
ǤʹǡͺǤ
Ǥ͵ǡͺǤ
ǤͶǡͺǤ
Ǥͷ
graphically,andcompletingthesquare)
Volume
ǤǤͶǡǤǤʹǡǤǤ͵ǡǤǤͺƒ
ͺǤ
Ǥͻ
CompareQuadraticRelationships
ǤǤ͵
FeaturesofaGraph
ǤǤ͹ƒǡǤǤͻǡǤǤǤͳͲ
͹