Document

6.4: Logarithmic Functions
Let’s compile a list of some inverse functions we know:
Function
𝑓(π‘₯ ) = π‘Žπ‘₯
𝑓(π‘₯ ) = √π‘₯
𝑓(π‘₯ ) = π‘₯ 3
π‘Ž
𝑓 (π‘₯ ) =
π‘₯
Inverse
π‘₯
π‘Ž
βˆ’1 ( )
2
𝑓 π‘₯ =π‘₯ ,π‘₯ β‰₯0
3
𝑓 βˆ’1 (π‘₯ ) = √π‘₯
π‘Ž
𝑓 βˆ’1 (π‘₯ ) = , π‘₯ β‰  0
𝑓 βˆ’1 (π‘₯ ) =
π‘₯
𝑓(π‘₯ ) = π‘Ž π‘₯
????
We need a new operation!
1. Simplify each logarithmic expression:
a. log 2 8 =
b. log 2 32 =
c. log 3 27 =
1
d. log 5 =
5
e. log 4
1
16
=
So, logarithmic and exponential functions are inverses of each other.
That’ s pretty neat. Check this out:
https://www.desmos.com/calculator/ffsex0jnuz
Let’s look more closely at the graph of a logarithmic function:
In general, for f(x) = log π‘Ž π‘₯
ο‚§ contains the points: (1, 0),
1
(a, 1), and ( , -1)
π‘Ž
ο‚§ has a vertical asymptote at
x=0
ο‚§ is strictly increasing if a>1
ο‚§ is strictly decreasing if 0<a<1
Domain of a logarithmic function / range of an exponential function:
Range of a logarithmic function / domain of the exponential function:
2.
Find the domain of each logarithmic function:
a. 𝑔(π‘₯ ) = log 3 (2π‘₯ + 3)
b. β„Ž(π‘₯ ) = log 9 (
1
π‘₯βˆ’4
)
Let’s talk e:
So, log 𝑒 π‘₯ = ln π‘₯
(β€œnatural log of x”). Remember, 𝑒 β‰ˆ 2.718 …
3.
Graph each function.
π‘Ÿ(π‘₯ ) = 3 log 3 (π‘₯ βˆ’ 2)
π‘₯
𝑝(π‘₯ ) = ln ( ) + 1
2
Last definition, I promise
4.
Solve each logarithmic equation.
a. log 4 π‘₯ = 3
b. log 5 625 = π‘₯ βˆ’ 1
c. log π‘₯ 32 = 5
d. log 1000 = 25π‘₯
e. ln 𝑒 βˆ’2π‘₯ = 8
f. 3π‘₯+2 = 50
g. 2𝑒 π‘₯βˆ’1 = 10
h. log 4 4π‘₯ = βˆ’2
6.4 Homework:
p. 447: #9-113 EOO