Reviewed by Michael Overcash 6-4-09 Rereviewed by Michael Overcash 6-14-09 Acrylonitrile, hydrogen cyanide, and crude acetonitrile [10713-1] CONTENTS OF FACTORY GATE TO FACTORY GATE LIFE CYCLE INVENTORY SUMMARY Chemistry ....................................................................................................................................................... 2 Process Summary ........................................................................................................................................... 3 Summary of LCI Information ......................................................................................................................... 6 Process Diagram Interpretation Sheet ............................................................................................................ 8 Process Diagram or Boundary of LCI ............................................................................................................ 9 Mass Balance of Chemicals in Each Process Stream ....................................................................................14 Graph of Cumulative Chemical Losses through Manufacturing Process ......................................................23 Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process .......................24 Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process ...............25 Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling ............................................................26 Graph of Cumulative Energy Requirements ..................................................................................................28 Authors Peer reviews, name (date) Gtg report last modified on Checked for database consistency on First gtg version finalized on Modification history, Author (date) Products Standard inputs E. Griffing, M. Luhrs, and Students MR Overcash (1-1-1999); MR Overcash (1-1-2001); MR Overcash (6-14-2009) 6-26-2010 6-26-2010 2-24-2009 EMG (6-26-2010), EMG (5-18-2006), MKL (1-1-2001), Stu (1-11999), and EMG (6-14-2009) Acrylonitrile, Hydrogen cyanide, crude acetonitrile Sulfuric acid, Ammonia, Propylene, Oxygen from air Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard methods of engineering process design, and technical reviews. These reports are intended to be representative of industrial production based on the stated route. Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration of these data with lci data based on other methodologies is the responsibility of the user. Each report may be updated to improve model accuracy or representativeness. Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999 - present. updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 1 Chemistry Primary reaction: C3H6 + NH3 + 3/2 O2 C3H3N + 3 H2O propylene + ammonia + oxygen acrylonitrile + water (1) Side reactions: (type of side rxns) C3H6 + NH3 + 9/4 O2 C2H3N + 3 H2O + ½ CO2 + ½ CO (2) propene + ammonia + oxygen --> acetonitrile + water + carbon dioxide + carbon monoxide C2H3N + 3/2 O2 HCN + H2O + CO2 (3) acetonitrile + oxygen --> hydrogen cyanide + water + carbon dioxide Notes: Side reactions: (type of side rxns) C3H6 + 4.5O2 3CO2+3H2O propylene combustion C3H8 + 5O2 3CO2 + 4H2O propane combustion CO + 1/2 O2 CO2 carbon monoxide combustion (9) (10) (11) updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 2 Process Summary Literature Nearly all commercial acrylonitrile production is done via the Sohio process (Kirk Othmer, 2001). Ullmann's (2002) states that 90% of world production is based on the Sohio process, which is a vaporphase ammoxidation of propylene. Propylene, ammonia, and air are fed to a reactor at about 2 atm and 440oC. The vapor phase product is absorbed in an aqueous phase. Crude acrylonitrile is distilled from acetonitrile and water. HCN is then removed from the acrylonitrile. A final distillation produces acrylonitrile as a distillate product, removing heavy impurities in the bottoms. The acetonitrile is recovered by distillation from the waste water before treatment. Important process parameters are given in Table 1. Ammonium sulfate can be isolated and used as a fertilizer or disposed of (Kirk Othmer, 2001). Kirk othmer (2001) states that hydrogen cyanide is used as a product, but Ullmann's (2002) claims that the HCN is normally incinerated due to an excess supply. Recent cuts in acrylonitrile production have caused a shortage of acetonitrile (Chemical Week, 2009). In addition, ACS (2008) claims that increasing the production of HCN as a byproduct of acrylonitrile is highly desirable. Thus, the final disposition of these byproducts is likely to depend on current economic considerations. In this GTG report, we show the ammonium sulfate as a waste, but consider the HCN and acetonitrile by-products. However, use of the acetonitrile stream from this report would require further purification. Table 1. Process parameters Ullmann’s (2002) Reaction T, oC Reaction P, atm Propylene conversion, % Yield from propylene, % 0.3 to 2 Kirk Othmer (2001) 400510 0.5 to 2 63 to 71 98 (pure basis) 72 400-500 CEH (2005) Faith, Keyes, and Clark (1965) Petroleum Handbook Ulrich and Vasudevan(2009) Used in this GTG report 405 450 440 2 2.5 2 85 (based on full feed) 97 (pure basis) 69 69 (total input) 72% (pure basis) 0.475 95.6 (pure basis) 66 to 75 Ammonia used, kg / kg acrylonitrile Air used, kg / kg acrylonitrile 67 – 70 71 0.475 HCN production, kg/kg acrylonitrile 0.17 to 0.24 0.1 Acetonitrile production, kg/kg acrylonitrile 0.024 to 0.13 0.03 0.1 (can increase to as much as 0.15 with catalyst) 7.0 (6.09 cubic meter air / kg acrylonitrile) 0.155 0.0357 7.0 used for reaction, 1.3 used for incineration 0.11 0.11 0.14 0.058 (crude) 0.029 kg acetonitrile 0.03 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 3 Annual world wide production of acrylonitrile has grown from 260 million pounds in 1960 to more than 11.4 billion pounds in 2005. LCI design Air is compressed to 2 atmospheres and sent to the reactor. Propylene enters as a gas at -37 oC, is compressed to 2 atm, and sent to the reactor. Ammonia enters the process as a liquid at -34 oC (in order to maintain a liquid phase). The ammonia is pumped to two atmospheres, and heated to a vapor at -15 oC (required to vaporize at 2 atm), and sent to the reactor, which operates at 440 oC. The production of acrylonitrile is highly exothermic, and heat must be removed from the reactor despite the low input temperatures. The product is cooled to 148 oC in the vapor phase. In a second heat exchanger, the process stream is cooled further to 85 oC, condensing out most of the water. The exit stream from the second heat exchanger is fed to an absorber, where ammonia, acrylonitrile, hydrogen cyanide, and acetonitrile are absorbed. The pressure is assumed to drop to one atmosphere as it passes through the heat exchangers and absorber. The nitrogen, carbon dioxide, propene, propane, and carbon monoxide pass through the absorber and are sent as gases to a combustion reactor. From the absorber, sulfuric acid is added to the aqueous phase to neutralize the unreacted ammonia. A distillation column separates the acrylonitrile from the acetonitrile and water at one atmosphere and 78 oC (Di 1). This is a difficult separation, because of the small boiling point difference of acetonitrile and acrylonitrile. The activity coefficients of these chemicals in water were used to calculate the relative vapor pressure in this column. The acrylonitrile stream (tops from Di 1) is cooled to 26 oC, and hydrogen cyanide is distilled from the acrylonitrile stream in Di 2. The acrylonitrile is then distilled in Di 3 from any heavy by-products. The acetonitrile / water bottoms from Di 1 are sent to a recovery column. This column operates at 81.6 oC. Acetonitrile forms an azeotrope with water at 75 wt% acetonitrile and atmospheric pressure. In this separation, the distillate is less than 75 wt% acetonitrile. No further purification is done. U.S. patent 6,326,508 gives the reflux ratio of this column as > 2.7. We use a reflux ratio of three. References Kirk Othmer (2001) Encyclopedia of Chemical Technology, Acrylonitrile (Brazdill, J.F, article author). Ullmann's (2002) Ullmann's Encyclopedia of Industrial Chemistry, Acrylonitrile (Langvardt, P.W., article author). CEH (2005) Chemical Economics Handbook, Acrylonitrile (Sesto, B, and Toki, G., article authors) Faith, W.L., Keyes, D.B., and Clark, R.E., (1965) Industrial Chemicals, 3rd Ed., John Wiley & Sons. Ulrich, G., and Vasudevan, P. (2009) Acrylonitrile flow sheet, reproduced from Chemical Engineering Process Design and Economics - A Practicle Guide, accessed online at http://www.ulrichvasudesign.com/ACN.pdf. Chemical Week (2009) Accessed online: http://www.chemweek.com/markets/basic_chemicals/petrochemicals/acrylonitrile/Cuts-in-AcrylonitrileOutput-Cause-a-Shortage-of-By-product-Acetonitrile_17731.html ACS (2008) Patent Watch, January 21, 2008. accessed online, http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=839 &content_id=WPCP_007946&use_sec=true&sec_url_var=region1&__uuid=170656df-daec-4abf-bffc40b026b589da Critical parameters Conversion / Yield information from both reactors Total conversion in reactor 1: From mass Conversion of or Yield from propylene 97 % pure basis Conversion of or Yield from ammonia 91 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 4 (% of reactant entering the process that reacts) Total per pass conversion in reactor 1: (% of reactant entering the reactor that reacts) Total yield of reactor 1: (% yield acrylonitrile produced in the reactor based on reactant input to process) Total yield of Process: (% yield produced by the overall process based on reactant input to process) Notes: balance 93 % total basis From mass balance 97 % pure basis 93 % total basis 91 From mass balance 77 77 From mass balance 69 (72% on a pure basis) 67 Product purity Used here LiteratureSource Acrylonitrile 99.8 99.7 Comments Ulrich (Chemical Engineering Process Design and Economics, A Practical Guide, 2nd Edition, G. D. Ulrich and P. T. Vasudevan) updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 5 Summary of LCI Information Inputs Input purity Input UID Input Name 7664-93-9 Sulfuric acid 139 [kg/hr] 7664-41-7 Ammonia 477 [kg/hr] 115-07-1 Propylene 1148 [kg/hr] UIDO2FromAir Oxygen from air 1933 [kg/hr] Total 3697 [kg/hr] UID Name 7732-18-5 Water UIDN2FromAir UIDO2FromAir Input Flow Flow Non-reacting inputs Purity Nitrogen from air Oxygen from air Total UID No ancillary inputs Name Flow Units Units 1.20e+4 [kg/hr] 6402 [kg/hr] 7.02 [kg/hr] 1.84e+4 [kg/hr] Ancillary inputs Purity Comments Comments Units Comments Units Comments Products Product UID Product Name 107-13-1 Acrylonitrile 74-90-8 Hydrogen cyanide Product Flow 1000 148 92.9 crude UIDCrudeAcetonitrile acetonitrile Total UID Name 7732-18-5 Water 7782-44-7 7727-37-9 Flow [kg/hr] [kg/hr] 47.2 56.4 [kg/hr] 1195 [kg/hr] Benign Outflows Purity Units 1.36e+4 [kg/hr] Oxygen 7.02 [kg/hr] Nitrogen 6402 [kg/hr] 2.00e+4 [kg/hr] Total Emission UID Purity Emission Name Chemical Emissions Gas Liquid Solid Solvent Units Flow Flow Flow Flow Has azeotrope with water. Stream contains 8.90 kg water and 10.2 kg acrylonitrile Comments Comments updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 6 630-08-0 124-38-9 7783-20-2 74-90-8 Carbon monoxide Carbon dioxide Ammonium sulfate Hydrogen cyanide 0.414 0 0 0 [kg/hr] 733 0 0 0 [kg/hr] 0 173 0 0 [kg/hr] 0 2.09e-2 0 0 [kg/hr] 75-05-8 Acetonitrile 0.300 3.23 0 0 [kg/hr] 107-13-1 Acrylonitrile 10.3 10.2 0 0 [kg/hr] 7664-41-7 Ammonia 2.38 0 0 0 [kg/hr] 74-98-6 Propane 0.228 0 0 0 [kg/hr] 115-07-1 Propylene 5.71 0 0 0 [kg/hr] 752 186 0 0 [kg/hr] Totals Mass Balance Total inputs 2.21e+4 Total outflows 2.21e+4 Net input -4.07 Energy use Energy type electricity heating steam coal Net input requirement Amount Comments 742 [MJ/hr] 1.07e+4 [MJ/hr] 0 [MJ/hr] 1.14e+4 [MJ/hr] cooling water -3.54e+4 [MJ/hr] potential recovery -1.68e+4 [MJ/hr] Net energy -5353 [MJ/hr] Net of energies input to system Net input requirement potential recovery updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 7 Process Diagram Interpretation Sheet 1) As much as possible, standard symbols are used for all unit processes. 2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is given on the attached Process Mass Balance sheet 3) The physical state of most streams is shown (gas, g; liquid, l; solid, s) 4) The process numbering is as follows, generally numbers progress from the start to the end of the process numbers are used for process streams C i , i = 1,..n are used for all cooling non-contact streams S j, j = 1,...n are used for all steam heating non-contact streams 5) Recycle streams are shown with dotted lines For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 8 Process Diagram or Boundary of LCI Steam enters the process as a gas at 207 oC and leaves as a liquid at 207 oC. Cooling water enters at 20 oC and leaves at 50 oC. Unless otherwise indicated, all processes are at 1 atm and 25oC. C7 12 (l) 4000 kg Water 25.0 oC P3 10 (l) 8000 kg Water 25.0 oC C3 Cmp 1 1 (g) 6992 kg Air 25.0 oC 2 (g) 90.4 oC 2.0 atm HX 5 9 (g) 85 oC C4 C6 R1 P1 5 (l) 475 kg Ammonia -34.0 oC 11 (l) 4 (g) -12.1 oC 2.0 atm Cmp 2 3 (g) 1142 kg Propylene -37.0 oC S2 5a (l) -34.0 oC 2.0 atm HX 3 C1 15 (g) 15 oC C8 P2 8 (g) 148.0 oC 1.5 atm A 14 (l) 10 oC HX 6 C5 HX 4 7 (g) 440.0 oC 2.0 atm 13 (l) C2 6 (g) -15.0 oC 2.0 atm S1 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 9 B R2 Scrubber See reactor 2 for calculations 20 (l) 51.9 oC 1.0 atm C9 18 (g) 548.5 oC 1.0 atm 19 (g) 6402 kg Nitrogen 729 kg Carbon dioxide 200 kg Water 7.02 kg Oxygen 25.0 oC HX 1 C10 A R3 15 (g) 15 oC Blwr 1 17 (g) 16 (g) 1350 kg Air 25.0 oC C13 C12 C11 23 (l) 78 oC 20 (l) P7 25 (l) 26 oC HX 7 C Di 1 P4 B Mixer electricity 1 C14 P6 24 (l) 78 oC 22 (l) 51.9 oC 1.0 atm P8 S3 S12 S4 P5 HX 8 21 (l) 139 kg Sulfuric acid 25.0 oC updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. S11 10 34 (l) 81.6 oC 1.0 atm D C17 C16 Refrigeration 1 C15 26 (l) 26 oC C 25 (l) 26 oC Di 2 P9 27 (l) 137 kg Hydrogen cyanide 10.2 kg Acrylonitrile 0.268 kg Water 1.95E-03 kg Acetonitrile 1.09E-05 kg Sulfuric acid 10.0 oC P10 C18 28 (l) 26 oC P11 S5 S8 S6 29 (l) 78 oC HX 10 Fugitive Losses (Total) (g) 10.3 kg Acrylonitrile 5.71 kg Propylene 3.64 kg Carbon dioxide 2.38 kg Ammonia 0.414 kg Carbon monoxide 0.300 kg Acetonitrile 0.228 kg Propane S7 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 11 E 31 (l) 998 kg Acrylonitrile 1.38 kg Hydrogen cyanide 0.530 kg Water 0.116 kg Acetonitrile 1.08E-06 kg Sulfuric acid 25.0 oC C21 C20 C19 30 (g) 78 oC HX 13 P13 Acrylonitrile Di 3 P12 C22 E P14 29 (l) 78 oC 32 (l) 78 oC S9 S10 C23 HX 14 C24 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 12 Heavy Impurities 33 (l) 26.0 kg Water 10.1 kg Acrylonitrile 0.272 kg Acetonitrile 6.93E-03 kg Hydrogen cyanide 1.07E-03 kg Sulfuric acid 25.0 oC 36 (l) 26.7 kg Acetonitrile 10.2 kg Acrylonitrile 8.90 kg Water 1.39 kg Hydrogen cyanide 0.109 kg Sulfuric acid 25.0 oC C27 C26 35 (l) 81.6 oC 1.0 atm P16 C25 34 (l) HX 11 Di 4 P15 37 (l) 81.6 oC 1.0 atm D S13 C28 Crude Acetontrile P17 C29 S14 Aqueous to treat HX 12 C30 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 13 38 (l) 1.33E+04 kg Water 173 kg Ammonium sulfate 10.8 kg Sulfuric acid 2.96 kg Acetonitrile 0.103 kg Acrylonitrile 0.0140 kg Hydrogen cyanide 25.0 oC Mass Balance of Chemicals in Each Process Stream R1 6992 5363 1629 5363 1629 1142 1142 1096 45.7 1142 1096 45.7 475 475 475 475 475 475 is converted in rxn 1 ( 74.3 % of reactor input) is lost in rxn 2 is lost in rxn 3 8609 0 0 5363 1629 1096 45.7 475 Input to : reactor R1 : 3.00 -1.50 -1.00 Reaction updated on 6/26/2010 14 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 0 - 1.00 1.00 0 0 0 0 0 0 Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Hydrogen cyanide Acetonitrile -140 kg Acrylonitrile Acetonitrile Ammonia -243 kg Input Propane g g l l g Propylene 1.00 2.00 1.00 2.00 2.00 815 kg -37.0 -12.1 -34.0 -34.0 -15.0 Propylene Oxygen 3a 4 5 5a 6 see propylene report for input condition 6992 6992 6992 1142 Nitrogen g g g g Air 1.00 1.00 2.00 1.00 Water Phase 25.0 25.0 90.4 -37.0 Total Flow P 1 1a 2 3 Input Input Gas Liquid Solid Temp [C] Streams Comments All flow rates are given in kg / hr Physical state of chemical losses: - 1028 330 - 19.4 19.4 1.00 1.00 0.500 0.500 101 243 130 82.8 5.92 5.92 2.96 2.96 44.5 1028 90.6 NA -1.00 1.00 1.00 -213 140 228 -5.19 5.19 5.19 30.0 140 NA NA 0 0 358 82.8 -0 NA NA NA Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Acetonitrile Acrylonitrile Ammonia Propane Propylene Oxygen Nitrogen Air Water Total Flow Phase P Temp [C] Streams Comments Coefficient 1 R1 : 0 1048 -931 -815 Conversion 1 [kg/hr] R1 : 19.4 58.2 -29.1 -19.4 Conversion 1 [kgmol/hr] R1 : 3.00 -2.25 -1.00 Reaction Coefficient 2 R1 : 0 320 -426 -249 Conversion 2 [kg/hr] R1 : 5.92 17.8 -13.3 -5.92 Conversion 2 [kgmol/hr] R1 : 1.00 -1.50 Reaction Coefficient 3 R1 : 0 93.3 -249 Conversion 3 [kg/hr] R1 : 2.59 5.19 -7.78 Conversion 3 [kgmol/hr] Flow out of : 8609 1461 0 5363 22.8 32.9 45.7 reactor Primary : Acrylonitrile product Total : -12.2 -0 NA NA 93.1 NA updated on 6/26/2010 15 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. Input R2 Input R3 45.7 kg Propane 82.8 kg Carbon monoxide 2.00 1.50 1.00 1.00 1.00 1.00 1.00 1.00 g g g l l l l l 1.00 1.00 1.00 1.00 358 82.8 358 82.8 358 82.8 0 358 82.8 : 2.06E+04 1.35E+04 0 358 82.8 g g g g 0 5363 22.8 32.9 45.7 44.5 1028 no reactions 5988 82.6 5363 22.8 32.9 45.7 1350 1350 1350 1040 311 1350 1040 311 is converted in rxn 1 ( 100 % of reactor input) is lost in rxn 2 is lost in rxn 3 7338 82.6 0 6402 333 32.9 45.7 Input to : reactor R3 : 3.00 -4.50 -1.00 updated on 6/26/2010 16 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 30.0 140 0 0 0 358 82.8 0 0 0 0 0 358 82.8 3.00 Water Propane Water 0 0 0 : 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 1461 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 8000 8000 4000 4000 4000 No reactions specified; used to model temperature change in scrubber. 2.06E+04 1.35E+04 0 5363 22.8 32.9 45.7 44.5 1028 30.0 140 0 : 8609 8609 8609 8000 8000 4000 4000 4000 NA Steam 76.6 NA NA Carbon monoxide Hydrogen cyanide 58.0 76.6 Ammonium sulfate Carbon dioxide Acetonitrile NA Sulfuric acid Acrylonitrile : Ammonia NA Propylene NA Oxygen -0 90.6 NA Nitrogen -0 98.6 97.0 Air NA Total Flow : Phase P Temp [C] Streams Comments Input conversion Per pass conversion Total yield from reactor 7 440 8 148 9 85.0 10 25.0 11 25.0 12 25.0 13 25.0 14 15.0 kg Input to reactor Flow out of reactor Primary product 15 15.0 16 25.0 16a 25.0 17 25.0 32.9 kg Propylene 103 2.35 3.00 137 3.11 1.00 -1.00 130 -82.8 2.96 -2.96 0 0 0 0 0 0 729 0 Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Acetonitrile Acrylonitrile Ammonia Propane Propylene Oxygen Nitrogen Air Water Total Flow Phase P Temp [C] Streams Comments Reaction Coefficient 1 R3 : 0 42.3 -113 -32.9 Conversion 1 [kg/hr] R3 : 0.783 2.35 -3.52 Conversion 0.783 1 [kgmol/hr] R3 : 4.00 -5.00 -1.00 Reaction Coefficient 2 R3 : 0 74.8 -166 -45.7 Conversion 2 [kg/hr] R3 : 1.04 4.15 -5.19 -1.04 Conversion 2 [kgmol/hr] R3 : Reaction 0.500 Coefficient 3 R3 : -47.3 Conversion 3 [kg/hr] R3 : -1.48 Conversion 3 [kgmol/hr] Flow out of : 7338 200 0 6402 7.02 0 0 reactor Primary : NA product updated on 6/26/2010 17 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. Waste Input Di 1 549 1.00 g 25.0 1.00 g 1.00 l 1.00 l NA 7338 -7338 200 -200 1.46E+04 1.34E+04 139 0 -0 97.9 100 100 0 6402 7.02 0 - -7.02 6402 0 0 0 0 0 0 0 0 0 0 0 1.00 l : 1.48E+04 1.34E+04 0 0 0.200 100 100 0 100 0 100 -0 NA NA 0 0 0 0 0 0 0 0 0 0 0 44.5 1028 0 0 2.00 44.5 0 0 1028 100 100 99.0 30.0 0 140 0 30.0 1.30 140 10.9 173 99.0 0.0100 0 0 0 139 0 -1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 -128 173 1.00 98.7 1.00 100.0 100 : 99.9 77.9 81.6 25.9 340 s 0 0 0 0 0 0 1018 0.390 78.0 1.00 l 26.0 1.00 l 1.36E+04 1.34E+04 1184 26.8 0 0 0 0 0 0 0 0 0 0 0 10.3 29.6 0 1018 0.390 percentage of input in 1.00 l distillate percentage of input in bottoms Boiling Temperature : (Tb) [oC] Distillate 26 26.0 1.00 l 1.00 1.00 0.500 139 1.09E0 03 1.40 10.9 173 139 1.09E0 03 99.0 1.00 99.0 99.0 99.5 1.00 99.0 99.9 77.9 81.6 25.9 340 Bottoms 28 26.0 1.00 l 148 0.268 0 0 0 0 0 1036 26.5 0 0 0 0 0 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 18 0 0 0 0 26.8 24 25 0 10.2 1.95E03 0 1008 0.388 137 1.09E05 1.39 1.08E03 Water Steam 100 0 729 0 -729 99.8 1184 NA NA : 1.00 l Carbon monoxide Hydrogen cyanide NA Ammonium sulfate Carbon dioxide Acetonitrile NA Sulfuric acid Acrylonitrile 2.88 NA 0 0 -0 NA Ammonia Propane Oxygen NA Propylene Nitrogen -0.975 : -0 NA Air Water Total Flow Phase P Temp [C] : 20 51.9 21 25.0 Neutralization reaction coefficients Neutralization reaction , kg/hr Feed 22 51.9 percentage of input in distillate percentage of input in bottoms Boiling Temperature (Tb) [oC] Distillate 23 78.0 Bottoms Feed Di 2 Streams Comments Total conversion Per pass conversion 18 19 0 0 Feed Di 3 27 10.0 1.00 l -148 -0.268 0 0 0 0 0 29 78.0 1.00 l 1036 26.5 0 0 0 0 0 percentage of input in distillate percentage of input in bottoms Boiling Temperature (Tb) [oC] Distillate 30 78.0 1.00 0 -10.2 1.95E03 0 1008 0.388 -137 1.09E05 1.39 1.08E03 99.5 0.100 0 0 0 0 0 0 1.38 1.08E0 06 6.93E- 1.07E0 03 03 -1.38 0 1.08E06 0 6.93E- 1.07E03 03 1.40 10.9 173 99.0 1.00 0 0 0 0 0 0 : 2.00 99.0 30.0 : 98.0 1.00 70.0 0.500 99.9 : 99.9 77.9 81.6 340 25.9 l 1000 0.530 0 0 0 0 0 0 32 78.0 1.00 l 36.3 26.0 0 0 0 0 0 0 10.1 0.272 Main product 31 25.0 1.00 l -1000 -0.530 0 0 0 0 0 0 -998 -0.116 Waste 33 25.0 1.00 l -36.3 -26.0 0 0 0 0 0 0 -10.1 -0.272 1.00 l : 1.36E+04 1.34E+04 0.0667 0 0 0 0 0 0 10.3 99.0 29.6 90.0 : 99.9 1.00 10.0 1.00 99.0 : 99.9 77.9 81.6 25.9 340 s l l l l 47.2 8.90 1.35E+04 1.33E+04 -47.2 -8.90 -1.35E+04 1.33E+04 99.8 Bottoms Feed 34 81.6 percentage of input in distillate percentage of input in bottoms Boiling Temperature (Tb) [oC] Distillate 35 81.6 Bottoms 37 81.6 By-product 36 25.0 Waste 38 25.0 Di 4 Product purity (%) 1.00 1.00 1.00 1.00 0 0 0 0 0 0 0 0 0 0 0 0 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 0 0 0 0 19 0 0 0 0 998 0.116 Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Acetonitrile Acrylonitrile Ammonia Propane Propylene Oxygen Nitrogen Air Water Total Flow Phase P Temp [C] Streams Comments By-product 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10.2 26.7 1.39 0.109 0 0 0.103 2.96 0.0140 10.8 173 0 -10.2 -26.7 -1.39 -0.109 0 0 - -2.96 - -10.8 0.103 0.0140 173 Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Acetonitrile Acrylonitrile Ammonia Propane Propylene Oxygen Nitrogen Air Water Total Flow Phase P Temp [C] Streams Comments Waste Main product Overall Rxn coefficients Total yield of process (from reactant) Fugitive g Losses (Total) Input Sum Fugitive Replacement of Reactants Total Input (Input + Fugitive Replacement) Product Sum Main product flow Net Input (in - out, omitting fugitives) C1 20.0 1.00 l C2 50.0 1.00 l Acrylonitrile 1.00 NA -23.0 0 -1.50 -1.00 - 1.00 1.00 NA 67.0 NA 68.9 0 0 0 -5.71 - -10.3 -0.300 0.228 2.38 0 0 2.21E+04 1.20E+04 8342 8.09 0 0 1142 0 5.71 0 475 2.38 0 2.21E+04 1.20E+04 8342 0 0 1148 0 477 0 0 139 0 0 0 0 0 0 139 0 0 0 26.8 140 0.109 0 0 0 998 0.116 1.38 1.08E06 0 0 0 1195 9.70 0 0 0 0 0 0 1018 1000 0.530 0 0 0 0 0 0 0 -3.64 0.414 0 0 3.47E-05 Input 9.25E+04 Cooling -9.25E+04 0 0 0 0 out Input C3 20.0 1.00 l 2.28E+04 Cooling C4 50.0 1.00 l -2.28E+04 0 0 0 0 out Input C5 20.0 1.00 l 2.74E+04 Cooling C6 50.0 1.00 l -2.74E+04 0 0 0 0 out Input C7 20.0 1.00 l 1135 Cooling C8 50.0 1.00 l -1135 0 0 0 0 out Input C9 20.0 1.00 l 2.82E+04 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9.25E+04 9.25E+04 2.28E+04 2.28E+04 2.74E+04 2.74E+04 1135 -1135 2.82E+04 20 Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Acetonitrile Acrylonitrile Ammonia Propane Propylene Oxygen Nitrogen Air Water Total Flow Phase P Temp [C] Streams Comments Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Cooling out Input Steam C10 50.0 1.00 l -2.82E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C11 C12 20.0 1.00 l 50.0 1.00 l 3.38E+04 -3.38E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 C13 C14 20.0 1.00 l 50.0 1.00 l 836 -836 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2.82E+04 3.38E+04 0 3.38E+04 836 0 -836 C15 C16 20.0 1.00 l 50.0 1.00 l 1850 -1850 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1850 -1850 C17 C18 20.0 1.00 l 50.0 1.00 l 41.3 -41.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 41.3 -41.3 C19 C20 50.0 1.00 l 56.0 1.00 l 7897 -7897 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 7897 -7897 C21 C22 62.0 1.00 l 68.0 1.00 l 669 -669 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 669 -669 C23 C24 74.0 1.00 l 80.0 1.00 l 46.0 -46.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 46.0 -46.0 C25 C26 86.0 1.00 l 92.0 1.00 l 1267 -1267 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1267 -1267 C27 C28 86.0 1.00 l 92.0 1.00 l 45.9 -45.9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 45.9 -45.9 C29 C30 86.0 1.00 l 92.0 1.00 l 2.15E+04 -2.15E+04 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S1 S2 207 1.00 l 207 1.00 l 397 -397 0 397 0 -397 0 0 0 0 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 0 21 0 0 0 0 0 0 0 0 2.15E+04 2.15E+04 0 Water Steam Carbon monoxide Ammonium sulfate Carbon dioxide Sulfuric acid Hydrogen cyanide Acetonitrile Acrylonitrile Ammonia Propane Propylene Oxygen Nitrogen Air Water Total Flow Phase P Temp [C] Streams Comments out Input Steam out Input Steam out Input Steam out Input Steam out Input Steam out Input Steam out S3 S4 207 1.00 l 207 1.00 l 4011 -4011 0 0 0 0 0 0 0 0 0 0 0 0 0 S5 S6 207 1.00 l 207 1.00 l 166 -166 0 0 0 0 0 0 0 0 0 0 0 0 0 4011 0 4011 166 0 -166 S7 S8 207 1.00 l 207 1.00 l 63.8 -63.8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 S9 S10 207 1.00 l 207 1.00 l 716 -716 0 0 0 0 0 0 0 0 0 0 0 0 0 63.8 63.8 716 0 -716 S11 S12 207 1.00 l 207 1.00 l 125 -125 0 125 0 -125 0 S13 S14 207 1.00 l 207 1.00 l 115 -115 0 115 0 -115 0 0 0 0 0 0 0 0 0 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 0 0 22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Graph of Cumulative Chemical Losses through Manufacturing Process Cumulative Chemical Loss 1,000 900 800 kg chemical loss / hr 700 600 500 400 300 200 100 1 1a 2 3 3a 4 5 5a 6 7 8 9 10 11 12 13 14 15 16 16a 17 18 19 20 21 22 23 24 25 26 28 27 29 30 32 31 33 34 35 37 36 38 Fug. loss 0 Process Stream updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 23 Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process Cumulative Contaminated Water Use 16,000 14,000 kg contaminated water / hr 12,000 10,000 8,000 6,000 4,000 2,000 1 1a 2 3 3a 4 5 5a 6 7 8 9 10 11 12 13 14 15 16 16a 17 18 19 20 21 22 23 24 25 26 28 27 29 30 32 31 33 34 35 37 36 38 0 Process Stream updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 24 Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process Cumulative Non-Contamintated Water Use 300,000 kg non-contaminated water / hr 250,000 200,000 150,000 100,000 50,000 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20 C21 C22 C23 C24 C25 C26 C27 C28 C29 C30 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 0 Process Stream updated on 6/26/2010 25 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms), and Assumed Heat Recovery from Hot Streams Receiving Cooling Reactor 2 and 3 are adiabatic, and the energy requirement should be zero. The non-zero calculated values appear in this Table as a check. 15.0 NA Hx7 E Di2 R3 Reactor 3 0 1375 549 NA Ref1 P4 Pump 4 1.36 1377 E Di3 P5 MxE1 P6 Pump 5 Mixer electricity 1 Pump 6 4.35E-03 5.24 1.38 1377 1382 1383 E E E Hx13 Hx14 Di4 Di1 Cumulative energy [MJ / 1000 kg Product] Cumulative recovered [MJ / 1000 kg Product] 1310 1375 Energy Recovered 0.838 65.0 Tef [C] (for recovery efficiency) Recovery Efficiency Reactor 2 Blower 1 R1 Hx4 Hx5 Hx6 Hx1 Di1 Cumulative cooling water energy R2 Blw1 E E E -15.0 S E E Energy Loss 611 663 663 1309 1309 1309 Unit 611 51.9 0.160 646 0.252 0.557 Process diagram label Compressor 1 Compressor 2 Pump 1 Heat exchanger 3 Pump 3 Pump 2 To [C] (Used to determine Type Energy energy type) Cmp1 Cmp2 P1 Hx3 P3 P2 Energy input [MJ / 1000 kg Product] Unit Cooling Requirements [MJ / hr] Process Diagram Label Energy Input [MJ / hr] Reactor 1 -1.37E+04 Heat exchanger 4 -3364 Heat exchanger 5 -4046 Heat exchanger 6 -168 Heat exchanger 1 -4167 Distillation -4985 condenser 1 Heat exchanger 7 -123 Distillation -273 condenser 2 Refrigerator cooling -6.09 1 Distillation -1166 condenser 3 Heat exchanger 13 -98.8 Heat exchanger 14 -6.79 Distillation -187 condenser 4 Heat exchanger 11 -6.77 -1.37E+04 -1.70E+04 -2.11E+04 -2.12E+04 -2.54E+04 -3.04E+04 440 440 148 25.0 549 78.0 0.600 0.600 0.250 0 0.750 0.250 -8198 -2018 -1012 0 -3126 -1246 -3.05E+04 -3.08E+04 78.0 24.9 0.250 0 -30.9 -1.56E+04 0 -1.56E+04 -3.08E+04 25 0 0 -1.56E+04 -3.20E+04 76.9 0.250 -292 -1.59E+04 -3.21E+04 -3.21E+04 -3.22E+04 78.0 78.0 81.6 0.250 0.250 0.250 -24.7 -1.59E+04 -1.70 -1.59E+04 -46.8 -1.60E+04 -3.23E+04 81.6 0.250 -1.69 -1.60E+04 -3179 -3.54E+04 81.6 0.250 -795 -1.68E+04 Distillation reboiler 6518 7901 78.0 S Hx11 1 P7 Pump 7 0.0848 7902 E Hx12 Heat exchanger 12 P9 Pump 9 0.0848 7902 E Di2 Distillation reboiler 270 8172 24.9 S 2 P10 Pump 10 0.0121 8172 E updated on 6/26/2010 26 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. -8198 -1.02E+04 -1.12E+04 -1.12E+04 -1.44E+04 -1.56E+04 Ref1 P11 Hx10 P12 Di3 P13 P14 P8 Hx8 P15 Di4 P16 P17 Refrigerator elect. 1 Pump 11 Heat exchanger 10 Pump 12 Distillation reboiler 3 Pump 13 Pump 14 Pump 8 Heat exchanger 8 Pump 15 Distillation reboiler 4 Pump 16 Pump 17 Potential recovery Net energy Electricity DowTherm Heating steam Direct fuel use Heating natural gas Diesel process Undefined Heating coal Energy input requirement Cooling water Cooling refrigeration Potential heat recovery Net energy 1.68 0.0741 104 0.0741 1164 8174 8174 8277 8278 9441 0E E 78.0 S E 76.9 S 0.0715 2.10E-03 1.20 203 1.20 187 9441 9441 9443 9645 9646 9833 E E E 81.6 S E 81.6 S 3.36E-03 1.19 -1.68E+04 9833 9835 -6957 -6957 E E 742 E 0D 9091 S 0F 0G 0 Ds 0U 0C 9834 Potential recovery: [MJ/hr] [MJ/hr] [MJ/hr] [MJ/hr] [MJ/hr] [MJ/hr] [MJ/hr] [MJ/hr] [MJ/hr] -3.54E+04 [MJ/hr] [MJ/hr] -1.68E+04 [MJ/hr] -6958 [MJ/hr] updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. 27 -1.68E+04 -2,000 -4,000 0 updated on 6/26/2010 Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present. -6,000 -8,000 Process Unit 28 Potential recovery Pump 17 Pump 16 Distillation reboiler 4 Pump 15 Heat exchanger 8 Pump 8 Pump 14 Pump 13 Distillation reboiler 3 Pump 12 Heat exchanger 10 Pump 11 Refrigerator elect. 1 Pump 10 Distillation reboiler 2 Pump 9 Pump 7 Distillation reboiler 1 Pump 6 Mixer electricity 1 Pump 5 Pump 4 Reactor 3 Blower 1 Reactor 2 Pump 2 Pump 3 Heat exchanger 3 Pump 1 Compressor 2 Compressor 1 Start MJ / hr Graph of Cumulative Energy Requirements Cumulative Energy Input 12,000 10,000 8,000 6,000 4,000 2,000
© Copyright 2026 Paperzz