Acrylonitrile, hydrogen cyanide, and crude acetonitrile

Reviewed by Michael Overcash 6-4-09
Rereviewed by Michael Overcash 6-14-09
Acrylonitrile, hydrogen cyanide, and crude acetonitrile [10713-1]
CONTENTS OF FACTORY GATE TO FACTORY GATE
LIFE CYCLE INVENTORY SUMMARY
Chemistry ....................................................................................................................................................... 2
Process Summary ........................................................................................................................................... 3
Summary of LCI Information ......................................................................................................................... 6
Process Diagram Interpretation Sheet ............................................................................................................ 8
Process Diagram or Boundary of LCI ............................................................................................................ 9
Mass Balance of Chemicals in Each Process Stream ....................................................................................14
Graph of Cumulative Chemical Losses through Manufacturing Process ......................................................23
Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process .......................24
Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process ...............25
Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms),
and Assumed Heat Recovery from Hot Streams Receiving Cooling ............................................................26
Graph of Cumulative Energy Requirements ..................................................................................................28
Authors
Peer reviews, name (date)
Gtg report last modified on
Checked for database consistency on
First gtg version finalized on
Modification history, Author (date)
Products
Standard inputs
E. Griffing, M. Luhrs, and Students
MR Overcash (1-1-1999); MR Overcash (1-1-2001); MR
Overcash (6-14-2009)
6-26-2010
6-26-2010
2-24-2009
EMG (6-26-2010), EMG (5-18-2006), MKL (1-1-2001), Stu (1-11999), and EMG (6-14-2009)
Acrylonitrile, Hydrogen cyanide, crude acetonitrile
Sulfuric acid, Ammonia, Propylene, Oxygen from air
Methodology: Environmental Clarity gtg lci reports are based on industrial practice information, standard
methods of engineering process design, and technical reviews. These reports are intended to be
representative of industrial production based on the stated route.
Terms of use: Environmental Clarity does not assume any liability due to use of these lci data. Integration
of these data with lci data based on other methodologies is the responsibility of the user. Each report may
be updated to improve model accuracy or representativeness.
Users of this report should cite: E. Griffing and M. Overcash, Chemical Life Cycle Database,
www.environmentalclarity.com, 1999 - present.
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
1
Chemistry
Primary reaction:
C3H6 + NH3 + 3/2 O2  C3H3N + 3 H2O
propylene + ammonia + oxygen  acrylonitrile + water
(1)
Side reactions: (type of side rxns)
C3H6 + NH3 + 9/4 O2  C2H3N + 3 H2O + ½ CO2 + ½ CO (2)
propene + ammonia + oxygen --> acetonitrile + water + carbon dioxide + carbon monoxide
C2H3N + 3/2 O2  HCN + H2O + CO2
(3)
acetonitrile + oxygen --> hydrogen cyanide + water + carbon dioxide
Notes:
Side reactions: (type of side rxns)
C3H6 + 4.5O2 3CO2+3H2O
propylene combustion
C3H8 + 5O2  3CO2 + 4H2O
propane combustion
CO + 1/2 O2  CO2
carbon monoxide combustion
(9)
(10)
(11)
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
2
Process Summary
Literature
Nearly all commercial acrylonitrile production is done via the Sohio process (Kirk Othmer, 2001).
Ullmann's (2002) states that 90% of world production is based on the Sohio process, which is a vaporphase ammoxidation of propylene. Propylene, ammonia, and air are fed to a reactor at about 2 atm and
440oC. The vapor phase product is absorbed in an aqueous phase. Crude acrylonitrile is distilled from
acetonitrile and water. HCN is then removed from the acrylonitrile. A final distillation produces
acrylonitrile as a distillate product, removing heavy impurities in the bottoms. The acetonitrile is recovered
by distillation from the waste water before treatment. Important process parameters are given in Table 1.
Ammonium sulfate can be isolated and used as a fertilizer or disposed of (Kirk Othmer, 2001). Kirk
othmer (2001) states that hydrogen cyanide is used as a product, but Ullmann's (2002) claims that the HCN
is normally incinerated due to an excess supply. Recent cuts in acrylonitrile production have caused a
shortage of acetonitrile (Chemical Week, 2009). In addition, ACS (2008) claims that increasing the
production of HCN as a byproduct of acrylonitrile is highly desirable. Thus, the final disposition of these
byproducts is likely to depend on current economic considerations. In this GTG report, we show the
ammonium sulfate as a waste, but consider the HCN and acetonitrile by-products. However, use of the
acetonitrile stream from this report would require further purification.
Table 1. Process parameters
Ullmann’s
(2002)
Reaction T,
oC
Reaction P,
atm
Propylene
conversion,
%
Yield from
propylene,
%
0.3 to 2
Kirk
Othmer
(2001)
400510
0.5 to 2
63 to 71
98
(pure
basis)
72
400-500
CEH
(2005)
Faith,
Keyes, and
Clark (1965)
Petroleum
Handbook
Ulrich and
Vasudevan(2009)
Used in this
GTG report
405
450
440
2
2.5
2
85 (based on full
feed)
97 (pure
basis)
69
69 (total
input)
72% (pure
basis)
0.475
95.6 (pure
basis)
66 to 75
Ammonia
used, kg /
kg
acrylonitrile
Air used,
kg / kg
acrylonitrile
67 – 70
71
0.475
HCN
production,
kg/kg
acrylonitrile
0.17 to
0.24
0.1
Acetonitrile
production,
kg/kg
acrylonitrile
0.024 to
0.13
0.03
0.1 (can
increase
to as
much as
0.15
with
catalyst)
7.0
(6.09 cubic
meter air /
kg
acrylonitrile)
0.155
0.0357
7.0 used for
reaction,
1.3 used for
incineration
0.11
0.11
0.14
0.058 (crude)
0.029 kg
acetonitrile
0.03
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
3
Annual world wide production of acrylonitrile has grown from 260 million pounds in 1960 to more than
11.4 billion pounds in 2005.
LCI design
Air is compressed to 2 atmospheres and sent to the reactor. Propylene enters as a gas at -37 oC, is
compressed to 2 atm, and sent to the reactor. Ammonia enters the process as a liquid at -34 oC (in order to
maintain a liquid phase). The ammonia is pumped to two atmospheres, and heated to a vapor at -15 oC
(required to vaporize at 2 atm), and sent to the reactor, which operates at 440 oC. The production of
acrylonitrile is highly exothermic, and heat must be removed from the reactor despite the low input
temperatures. The product is cooled to 148 oC in the vapor phase. In a second heat exchanger, the process
stream is cooled further to 85 oC, condensing out most of the water. The exit stream from the second heat
exchanger is fed to an absorber, where ammonia, acrylonitrile, hydrogen cyanide, and acetonitrile are
absorbed. The pressure is assumed to drop to one atmosphere as it passes through the heat exchangers and
absorber. The nitrogen, carbon dioxide, propene, propane, and carbon monoxide pass through the absorber
and are sent as gases to a combustion reactor.
From the absorber, sulfuric acid is added to the aqueous phase to neutralize the unreacted ammonia. A
distillation column separates the acrylonitrile from the acetonitrile and water at one atmosphere and 78 oC
(Di 1). This is a difficult separation, because of the small boiling point difference of acetonitrile and
acrylonitrile. The activity coefficients of these chemicals in water were used to calculate the relative vapor
pressure in this column. The acrylonitrile stream (tops from Di 1) is cooled to 26 oC, and hydrogen cyanide
is distilled from the acrylonitrile stream in Di 2. The acrylonitrile is then distilled in Di 3 from any heavy
by-products. The acetonitrile / water bottoms from Di 1 are sent to a recovery column. This column
operates at 81.6 oC. Acetonitrile forms an azeotrope with water at 75 wt% acetonitrile and atmospheric
pressure. In this separation, the distillate is less than 75 wt% acetonitrile. No further purification is done.
U.S. patent 6,326,508 gives the reflux ratio of this column as > 2.7. We use a reflux ratio of three.
References
Kirk Othmer (2001) Encyclopedia of Chemical Technology, Acrylonitrile (Brazdill, J.F, article author).
Ullmann's (2002) Ullmann's Encyclopedia of Industrial Chemistry, Acrylonitrile (Langvardt, P.W., article
author).
CEH (2005) Chemical Economics Handbook, Acrylonitrile (Sesto, B, and Toki, G., article authors)
Faith, W.L., Keyes, D.B., and Clark, R.E., (1965) Industrial Chemicals, 3rd Ed., John Wiley & Sons.
Ulrich, G., and Vasudevan, P. (2009) Acrylonitrile flow sheet, reproduced from Chemical Engineering
Process Design and Economics - A Practicle Guide, accessed online at
http://www.ulrichvasudesign.com/ACN.pdf.
Chemical Week (2009) Accessed online:
http://www.chemweek.com/markets/basic_chemicals/petrochemicals/acrylonitrile/Cuts-in-AcrylonitrileOutput-Cause-a-Shortage-of-By-product-Acetonitrile_17731.html
ACS (2008) Patent Watch, January 21, 2008. accessed online,
http://portal.acs.org/portal/acs/corg/content?_nfpb=true&_pageLabel=PP_ARTICLEMAIN&node_id=839
&content_id=WPCP_007946&use_sec=true&sec_url_var=region1&__uuid=170656df-daec-4abf-bffc40b026b589da
Critical parameters
Conversion / Yield information from both reactors
Total conversion in reactor 1:
From mass
Conversion of or Yield
from propylene
97 % pure basis
Conversion of or
Yield from ammonia
91
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
4
(% of reactant entering the process that
reacts)
Total per pass conversion in reactor 1:
(% of reactant entering the reactor that
reacts)
Total yield of reactor 1:
(% yield acrylonitrile produced in the
reactor based on reactant input to
process)
Total yield of Process:
(% yield produced by the overall
process based on reactant input to
process)
Notes:
balance
93 % total basis
From mass
balance
97 % pure basis
93 % total basis
91
From mass
balance
77
77
From mass
balance
69 (72% on a pure
basis)
67
Product purity
Used here
LiteratureSource
Acrylonitrile
99.8
99.7
Comments
Ulrich (Chemical Engineering Process Design
and Economics, A Practical Guide, 2nd
Edition, G. D. Ulrich and P. T. Vasudevan)
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
5
Summary of LCI Information
Inputs
Input
purity
Input UID
Input Name
7664-93-9
Sulfuric acid
139
[kg/hr]
7664-41-7
Ammonia
477
[kg/hr]
115-07-1
Propylene
1148
[kg/hr]
UIDO2FromAir
Oxygen from
air
1933
[kg/hr]
Total
3697
[kg/hr]
UID
Name
7732-18-5
Water
UIDN2FromAir
UIDO2FromAir
Input Flow
Flow
Non-reacting inputs
Purity
Nitrogen
from air
Oxygen from
air
Total
UID
No ancillary inputs
Name
Flow
Units
Units
1.20e+4
[kg/hr]
6402
[kg/hr]
7.02
[kg/hr]
1.84e+4
[kg/hr]
Ancillary inputs
Purity
Comments
Comments
Units
Comments
Units
Comments
Products
Product UID
Product
Name
107-13-1
Acrylonitrile
74-90-8
Hydrogen
cyanide
Product Flow
1000
148 92.9
crude
UIDCrudeAcetonitrile
acetonitrile
Total
UID
Name
7732-18-5
Water
7782-44-7
7727-37-9
Flow
[kg/hr]
[kg/hr]
47.2 56.4
[kg/hr]
1195
[kg/hr]
Benign Outflows
Purity
Units
1.36e+4
[kg/hr]
Oxygen
7.02
[kg/hr]
Nitrogen
6402
[kg/hr]
2.00e+4
[kg/hr]
Total
Emission UID
Purity
Emission
Name
Chemical Emissions
Gas Liquid Solid Solvent
Units
Flow Flow Flow Flow
Has azeotrope with water.
Stream contains 8.90 kg
water and 10.2 kg
acrylonitrile
Comments
Comments
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
6
630-08-0
124-38-9
7783-20-2
74-90-8
Carbon
monoxide
Carbon
dioxide
Ammonium
sulfate
Hydrogen
cyanide
0.414
0
0
0 [kg/hr]
733
0
0
0 [kg/hr]
0
173
0
0 [kg/hr]
0 2.09e-2
0
0 [kg/hr]
75-05-8
Acetonitrile
0.300
3.23
0
0 [kg/hr]
107-13-1
Acrylonitrile
10.3
10.2
0
0 [kg/hr]
7664-41-7
Ammonia
2.38
0
0
0 [kg/hr]
74-98-6
Propane
0.228
0
0
0 [kg/hr]
115-07-1
Propylene
5.71
0
0
0 [kg/hr]
752
186
0
0 [kg/hr]
Totals
Mass Balance
Total inputs
2.21e+4
Total outflows
2.21e+4
Net input
-4.07
Energy use
Energy type
electricity
heating steam
coal
Net input requirement
Amount
Comments
742 [MJ/hr]
1.07e+4 [MJ/hr]
0 [MJ/hr]
1.14e+4 [MJ/hr]
cooling water
-3.54e+4 [MJ/hr]
potential recovery
-1.68e+4 [MJ/hr]
Net energy
-5353 [MJ/hr]
Net of energies input to
system
Net input requirement potential recovery
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
7
Process Diagram Interpretation Sheet
1) As much as possible, standard symbols are used for all unit processes.
2) Only overall input and output chemicals are labeled on these diagrams. All intermediate information is
given on the attached Process Mass Balance sheet
3) The physical state of most streams is shown (gas, g; liquid, l; solid, s)
4) The process numbering is as follows,
 generally numbers progress from the start to the end of the process
 numbers are used for process streams
 C i , i = 1,..n are used for all cooling non-contact streams
 S j, j = 1,...n are used for all steam heating non-contact streams
5) Recycle streams are shown with dotted lines
For most streams, the temperature and pressure are shown, if the pressures are greater than 1 atm
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
8
Process Diagram or Boundary of LCI
Steam enters the process as a gas at 207 oC and leaves as a liquid at 207 oC. Cooling water enters at 20 oC and leaves at 50 oC.
Unless otherwise indicated, all processes are at 1 atm and 25oC.
C7
12 (l)
4000 kg Water
25.0 oC
P3
10 (l)
8000 kg Water
25.0 oC
C3
Cmp 1
1 (g)
6992 kg Air
25.0 oC
2 (g)
90.4 oC
2.0 atm
HX 5
9 (g)
85 oC
C4
C6
R1
P1
5 (l)
475 kg Ammonia
-34.0 oC
11 (l)
4 (g)
-12.1 oC
2.0 atm
Cmp 2
3 (g)
1142 kg Propylene
-37.0 oC
S2
5a (l)
-34.0 oC
2.0 atm
HX 3
C1
15 (g)
15 oC
C8
P2
8 (g)
148.0 oC
1.5 atm
A
14 (l)
10 oC
HX 6
C5
HX 4
7 (g)
440.0 oC
2.0 atm
13 (l)
C2
6 (g)
-15.0 oC
2.0 atm
S1
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
9
B
R2
Scrubber
See reactor 2 for
calculations
20 (l)
51.9 oC
1.0 atm
C9
18 (g)
548.5 oC
1.0 atm
19 (g)
6402 kg Nitrogen
729 kg Carbon dioxide
200 kg Water
7.02 kg Oxygen
25.0 oC
HX 1
C10
A
R3
15 (g)
15 oC
Blwr 1
17 (g)
16 (g)
1350 kg Air
25.0 oC
C13
C12
C11
23 (l)
78 oC
20 (l)
P7
25 (l)
26 oC
HX 7
C
Di 1
P4
B
Mixer
electricity 1
C14
P6
24 (l)
78 oC
22 (l)
51.9 oC
1.0 atm
P8
S3
S12
S4
P5
HX 8
21 (l)
139 kg Sulfuric acid
25.0 oC
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
S11
10
34 (l)
81.6 oC
1.0 atm
D
C17
C16
Refrigeration 1
C15
26 (l)
26 oC
C
25 (l)
26 oC
Di 2
P9
27 (l)
137 kg Hydrogen cyanide
10.2 kg Acrylonitrile
0.268 kg Water
1.95E-03 kg Acetonitrile
1.09E-05 kg Sulfuric acid
10.0 oC
P10
C18
28 (l)
26 oC
P11
S5
S8
S6
29 (l)
78 oC
HX 10
Fugitive Losses (Total) (g)
10.3 kg Acrylonitrile
5.71 kg Propylene
3.64 kg Carbon dioxide
2.38 kg Ammonia
0.414 kg Carbon monoxide
0.300 kg Acetonitrile
0.228 kg Propane
S7
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
11
E
31 (l)
998 kg Acrylonitrile
1.38 kg Hydrogen cyanide
0.530 kg Water
0.116 kg Acetonitrile
1.08E-06 kg Sulfuric acid
25.0 oC
C21
C20
C19
30 (g)
78 oC
HX 13
P13
Acrylonitrile
Di 3
P12
C22
E
P14
29 (l)
78 oC
32 (l)
78 oC
S9
S10
C23
HX 14
C24
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
12
Heavy Impurities
33 (l)
26.0 kg Water
10.1 kg Acrylonitrile
0.272 kg Acetonitrile
6.93E-03 kg Hydrogen cyanide
1.07E-03 kg Sulfuric acid
25.0 oC
36 (l)
26.7 kg Acetonitrile
10.2 kg Acrylonitrile
8.90 kg Water
1.39 kg Hydrogen cyanide
0.109 kg Sulfuric acid
25.0 oC
C27
C26
35 (l)
81.6 oC
1.0 atm P16
C25
34 (l)
HX 11
Di 4
P15
37 (l)
81.6 oC
1.0 atm
D
S13
C28
Crude Acetontrile
P17
C29
S14
Aqueous to treat
HX 12
C30
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
13
38 (l)
1.33E+04 kg Water
173 kg Ammonium sulfate
10.8 kg Sulfuric acid
2.96 kg Acetonitrile
0.103 kg Acrylonitrile
0.0140 kg Hydrogen cyanide
25.0 oC
Mass Balance of Chemicals in Each Process Stream
R1
6992
5363 1629
5363 1629
1142
1142
1096 45.7
1142
1096 45.7
475
475
475
475
475
475
is converted in rxn 1 ( 74.3
% of reactor input)
is lost in
rxn 2
is lost in
rxn 3
8609
0
0 5363 1629 1096 45.7 475
Input to
:
reactor
R1
:
3.00
-1.50 -1.00
Reaction
updated on 6/26/2010
14
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
0
- 1.00
1.00
0
0
0
0
0
0
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Hydrogen
cyanide
Acetonitrile
-140 kg
Acrylonitrile
Acetonitrile
Ammonia
-243 kg
Input
Propane
g
g
l
l
g
Propylene
1.00
2.00
1.00
2.00
2.00
815 kg
-37.0
-12.1
-34.0
-34.0
-15.0
Propylene
Oxygen
3a
4
5
5a
6
see
propylene
report for
input
condition
6992
6992
6992
1142
Nitrogen
g
g
g
g
Air
1.00
1.00
2.00
1.00
Water
Phase
25.0
25.0
90.4
-37.0
Total Flow
P
1
1a
2
3
Input
Input
Gas
Liquid
Solid
Temp [C]
Streams
Comments
All flow rates are given in kg / hr
Physical state of chemical losses:
- 1028
330
- 19.4
19.4
1.00
1.00
0.500 0.500
101
243
130 82.8
5.92
5.92
2.96 2.96
44.5 1028
90.6 NA
-1.00
1.00
1.00
-213
140
228
-5.19
5.19
5.19
30.0
140
NA
NA
0
0
358 82.8
-0 NA NA
NA
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Acetonitrile
Acrylonitrile
Ammonia
Propane
Propylene
Oxygen
Nitrogen
Air
Water
Total Flow
Phase
P
Temp [C]
Streams
Comments
Coefficient
1
R1
:
0
1048
-931 -815
Conversion
1 [kg/hr]
R1
:
19.4
58.2
-29.1 -19.4
Conversion
1
[kgmol/hr]
R1
:
3.00
-2.25 -1.00
Reaction
Coefficient
2
R1
:
0
320
-426 -249
Conversion
2 [kg/hr]
R1
:
5.92
17.8
-13.3 -5.92
Conversion
2
[kgmol/hr]
R1
:
1.00
-1.50
Reaction
Coefficient
3
R1
:
0
93.3
-249
Conversion
3 [kg/hr]
R1
:
2.59
5.19
-7.78
Conversion
3
[kgmol/hr]
Flow out of
:
8609
1461
0 5363 22.8 32.9 45.7
reactor
Primary
: Acrylonitrile
product
Total
:
-12.2
-0 NA NA
93.1 NA
updated on 6/26/2010
15
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
Input
R2
Input
R3
45.7 kg
Propane
82.8 kg
Carbon
monoxide
2.00
1.50
1.00
1.00
1.00
1.00
1.00
1.00
g
g
g
l
l
l
l
l
1.00
1.00
1.00
1.00
358 82.8
358 82.8
358 82.8
0
358 82.8
:
2.06E+04 1.35E+04
0
358 82.8
g
g
g
g
0 5363 22.8 32.9 45.7 44.5 1028
no
reactions
5988
82.6
5363 22.8 32.9 45.7
1350
1350
1350
1040 311
1350
1040 311
is converted in rxn 1 ( 100
% of reactor input)
is lost in
rxn 2
is lost in
rxn 3
7338
82.6
0 6402 333 32.9 45.7
Input to
:
reactor
R3
:
3.00
-4.50 -1.00
updated on 6/26/2010
16
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
30.0
140
0
0
0
358 82.8
0
0
0
0
0
358 82.8
3.00
Water
Propane
Water
0
0
0
:
1461
0 5363 22.8 32.9 45.7 44.5 1028 30.0
140
0
1461
0 5363 22.8 32.9 45.7 44.5 1028 30.0
140
0
1461
0 5363 22.8 32.9 45.7 44.5 1028 30.0
140
0
8000
8000
4000
4000
4000
No reactions specified; used to model temperature change in scrubber.
2.06E+04 1.35E+04
0 5363 22.8 32.9 45.7 44.5 1028 30.0
140
0
:
8609
8609
8609
8000
8000
4000
4000
4000
NA
Steam
76.6 NA
NA
Carbon
monoxide
Hydrogen
cyanide
58.0 76.6
Ammonium
sulfate
Carbon dioxide
Acetonitrile
NA
Sulfuric acid
Acrylonitrile
:
Ammonia
NA
Propylene
NA
Oxygen
-0 90.6 NA
Nitrogen
-0 98.6 97.0
Air
NA
Total Flow
:
Phase
P
Temp [C]
Streams
Comments
Input
conversion
Per pass
conversion
Total yield
from
reactor
7
440
8
148
9
85.0
10
25.0
11
25.0
12
25.0
13
25.0
14
15.0
kg
Input to
reactor
Flow out of
reactor
Primary
product
15
15.0
16
25.0
16a
25.0
17
25.0
32.9 kg
Propylene
103
2.35
3.00
137
3.11
1.00 -1.00
130 -82.8
2.96 -2.96
0
0
0
0
0
0
729
0
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Acetonitrile
Acrylonitrile
Ammonia
Propane
Propylene
Oxygen
Nitrogen
Air
Water
Total Flow
Phase
P
Temp [C]
Streams
Comments
Reaction
Coefficient
1
R3
:
0
42.3
-113 -32.9
Conversion
1 [kg/hr]
R3
:
0.783
2.35
-3.52
Conversion
0.783
1
[kgmol/hr]
R3
:
4.00
-5.00
-1.00
Reaction
Coefficient
2
R3
:
0
74.8
-166
-45.7
Conversion
2 [kg/hr]
R3
:
1.04
4.15
-5.19
-1.04
Conversion
2
[kgmol/hr]
R3
:
Reaction
0.500
Coefficient
3
R3
:
-47.3
Conversion
3 [kg/hr]
R3
:
-1.48
Conversion
3
[kgmol/hr]
Flow out of
:
7338
200
0 6402 7.02
0
0
reactor
Primary
: NA
product
updated on 6/26/2010
17
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
Waste
Input
Di 1
549 1.00 g
25.0 1.00 g
1.00 l
1.00 l
NA
7338
-7338
200
-200
1.46E+04 1.34E+04
139
0
-0 97.9
100
100
0 6402 7.02
0
- -7.02
6402
0
0
0
0
0
0
0
0
0
0
0
1.00 l
:
1.48E+04 1.34E+04
0
0
0.200 100 100
0
100
0
100
-0 NA NA
0
0
0
0
0
0
0
0
0
0
0 44.5 1028
0
0
2.00
44.5
0
0 1028
100 100 99.0
30.0
0
140
0
30.0
1.30
140 10.9 173
99.0 0.0100
0
0
0
139
0
-1.00 1.00
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
-128 173
1.00
98.7
1.00 100.0 100
:
99.9
77.9
81.6
25.9
340 s
0
0
0
0
0
0 1018 0.390
78.0 1.00 l
26.0 1.00 l
1.36E+04 1.34E+04
1184
26.8
0
0
0
0
0
0
0
0
0
0
0 10.3 29.6
0 1018 0.390
percentage of input in 1.00 l
distillate
percentage of input in
bottoms
Boiling Temperature
:
(Tb) [oC]
Distillate
26
26.0 1.00 l
1.00
1.00 0.500
139 1.09E0
03
1.40 10.9 173
139 1.09E0
03
99.0 1.00
99.0
99.0
99.5
1.00
99.0
99.9
77.9
81.6
25.9
340
Bottoms
28
26.0 1.00 l
148
0.268
0
0
0
0
0
1036
26.5
0
0
0
0
0
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
18
0
0
0
0
26.8
24
25
0 10.2 1.95E03
0 1008 0.388
137 1.09E05
1.39 1.08E03
Water
Steam
100
0 729
0 -729
99.8
1184
NA
NA
:
1.00 l
Carbon
monoxide
Hydrogen
cyanide
NA
Ammonium
sulfate
Carbon dioxide
Acetonitrile
NA
Sulfuric acid
Acrylonitrile
2.88 NA
0
0
-0 NA
Ammonia
Propane
Oxygen
NA
Propylene
Nitrogen
-0.975
:
-0 NA
Air
Water
Total Flow
Phase
P
Temp [C]
:
20
51.9
21
25.0
Neutralization reaction
coefficients
Neutralization reaction
, kg/hr
Feed
22
51.9
percentage of input in
distillate
percentage of input in
bottoms
Boiling Temperature
(Tb) [oC]
Distillate
23
78.0
Bottoms
Feed
Di 2
Streams
Comments
Total
conversion
Per pass
conversion
18
19
0
0
Feed
Di 3
27
10.0 1.00 l
-148
-0.268
0
0
0
0
0
29
78.0 1.00 l
1036
26.5
0
0
0
0
0
percentage of input in
distillate
percentage of input in
bottoms
Boiling Temperature
(Tb) [oC]
Distillate
30
78.0 1.00
0 -10.2
1.95E03
0 1008 0.388
-137
1.09E05
1.39 1.08E03
99.5 0.100
0
0
0
0
0
0
1.38 1.08E0
06
6.93E- 1.07E0
03
03
-1.38
0
1.08E06
0
6.93E- 1.07E03
03
1.40 10.9 173
99.0 1.00
0
0
0
0
0
0
:
2.00
99.0
30.0
:
98.0
1.00
70.0 0.500
99.9
:
99.9
77.9
81.6
340
25.9
l
1000
0.530
0
0
0
0
0
0
32
78.0 1.00 l
36.3
26.0
0
0
0
0
0
0 10.1 0.272
Main product
31
25.0 1.00 l
-1000
-0.530
0
0
0
0
0
0 -998 -0.116
Waste
33
25.0 1.00 l
-36.3
-26.0
0
0
0
0
0
0 -10.1 -0.272
1.00 l
:
1.36E+04 1.34E+04
0.0667
0
0
0
0
0
0 10.3
99.0
29.6
90.0
:
99.9
1.00
10.0
1.00
99.0
:
99.9
77.9
81.6
25.9
340 s
l
l
l
l
47.2
8.90
1.35E+04 1.33E+04
-47.2
-8.90
-1.35E+04
1.33E+04
99.8
Bottoms
Feed
34
81.6
percentage of input in
distillate
percentage of input in
bottoms
Boiling Temperature
(Tb) [oC]
Distillate
35
81.6
Bottoms
37
81.6
By-product
36
25.0
Waste
38
25.0
Di 4
Product
purity (%)
1.00
1.00
1.00
1.00
0
0
0
0
0
0
0
0
0
0
0
0
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
0
0
0
0
19
0
0
0
0
998 0.116
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Acetonitrile
Acrylonitrile
Ammonia
Propane
Propylene
Oxygen
Nitrogen
Air
Water
Total Flow
Phase
P
Temp [C]
Streams
Comments
By-product
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 10.2 26.7 1.39 0.109
0
0 0.103 2.96 0.0140 10.8 173
0 -10.2 -26.7 -1.39 -0.109
0
0
- -2.96
- -10.8
0.103
0.0140
173
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Acetonitrile
Acrylonitrile
Ammonia
Propane
Propylene
Oxygen
Nitrogen
Air
Water
Total Flow
Phase
P
Temp [C]
Streams
Comments
Waste
Main
product
Overall
Rxn
coefficients
Total yield of process
(from reactant)
Fugitive
g
Losses
(Total)
Input Sum
Fugitive Replacement
of Reactants
Total Input (Input + Fugitive
Replacement)
Product
Sum
Main
product
flow
Net Input (in - out,
omitting fugitives)
C1
20.0 1.00 l
C2
50.0 1.00 l
Acrylonitrile
1.00
NA
-23.0
0
-1.50 -1.00
- 1.00
1.00
NA
67.0 NA
68.9
0
0
0 -5.71
- -10.3 -0.300
0.228 2.38
0
0
2.21E+04 1.20E+04 8342
8.09
0
0 1142
0 5.71
0 475
2.38
0
2.21E+04 1.20E+04 8342
0
0 1148
0 477
0
0
139
0
0
0
0
0
0
139
0
0
0
26.8
140 0.109
0
0
0
998 0.116
1.38 1.08E06
0
0
0
1195
9.70
0
0
0
0
0
0 1018
1000
0.530
0
0
0
0
0
0
0 -3.64
0.414
0
0
3.47E-05
Input
9.25E+04
Cooling
-9.25E+04
0
0
0
0
out
Input
C3
20.0 1.00 l
2.28E+04
Cooling
C4
50.0 1.00 l
-2.28E+04
0
0
0
0
out
Input
C5
20.0 1.00 l
2.74E+04
Cooling
C6
50.0 1.00 l
-2.74E+04
0
0
0
0
out
Input
C7
20.0 1.00 l
1135
Cooling
C8
50.0 1.00 l
-1135
0
0
0
0
out
Input
C9
20.0 1.00 l
2.82E+04
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
9.25E+04
9.25E+04
2.28E+04
2.28E+04
2.74E+04
2.74E+04
1135
-1135
2.82E+04
20
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Acetonitrile
Acrylonitrile
Ammonia
Propane
Propylene
Oxygen
Nitrogen
Air
Water
Total Flow
Phase
P
Temp [C]
Streams
Comments
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Cooling
out
Input
Steam
C10
50.0 1.00 l
-2.82E+04
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C11
C12
20.0 1.00 l
50.0 1.00 l
3.38E+04
-3.38E+04
0
0
0
0
0
0
0
0
0
0
0
0
0
0
C13
C14
20.0 1.00 l
50.0 1.00 l
836
-836
0
0
0
0
0
0
0
0
0
0
0
0
0
0
2.82E+04
3.38E+04
0
3.38E+04
836
0
-836
C15
C16
20.0 1.00 l
50.0 1.00 l
1850
-1850
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1850
-1850
C17
C18
20.0 1.00 l
50.0 1.00 l
41.3
-41.3
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
41.3
-41.3
C19
C20
50.0 1.00 l
56.0 1.00 l
7897
-7897
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
7897
-7897
C21
C22
62.0 1.00 l
68.0 1.00 l
669
-669
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
669
-669
C23
C24
74.0 1.00 l
80.0 1.00 l
46.0
-46.0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
46.0
-46.0
C25
C26
86.0 1.00 l
92.0 1.00 l
1267
-1267
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1267
-1267
C27
C28
86.0 1.00 l
92.0 1.00 l
45.9
-45.9
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
45.9
-45.9
C29
C30
86.0 1.00 l
92.0 1.00 l
2.15E+04
-2.15E+04
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S1
S2
207 1.00 l
207 1.00 l
397
-397
0
397
0 -397
0
0
0
0
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
0
21
0
0
0
0
0
0
0
0
2.15E+04
2.15E+04
0
Water
Steam
Carbon
monoxide
Ammonium
sulfate
Carbon dioxide
Sulfuric acid
Hydrogen
cyanide
Acetonitrile
Acrylonitrile
Ammonia
Propane
Propylene
Oxygen
Nitrogen
Air
Water
Total Flow
Phase
P
Temp [C]
Streams
Comments
out
Input
Steam
out
Input
Steam
out
Input
Steam
out
Input
Steam
out
Input
Steam
out
Input
Steam
out
S3
S4
207 1.00 l
207 1.00 l
4011
-4011
0
0
0
0
0
0
0
0
0
0
0
0
0
S5
S6
207 1.00 l
207 1.00 l
166
-166
0
0
0
0
0
0
0
0
0
0
0
0
0
4011
0
4011
166
0 -166
S7
S8
207 1.00 l
207 1.00 l
63.8
-63.8
0
0
0
0
0
0
0
0
0
0
0
0
0
0
S9
S10
207 1.00 l
207 1.00 l
716
-716
0
0
0
0
0
0
0
0
0
0
0
0
0
63.8
63.8
716
0 -716
S11
S12
207 1.00 l
207 1.00 l
125
-125
0
125
0 -125
0
S13
S14
207 1.00 l
207 1.00 l
115
-115
0
115
0 -115
0
0
0
0
0
0
0
0
0
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
0
0
22
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Graph of Cumulative Chemical Losses through Manufacturing Process
Cumulative Chemical Loss
1,000
900
800
kg chemical loss / hr
700
600
500
400
300
200
100
1
1a
2
3
3a
4
5
5a
6
7
8
9
10
11
12
13
14
15
16
16a
17
18
19
20
21
22
23
24
25
26
28
27
29
30
32
31
33
34
35
37
36
38
Fug. loss
0
Process Stream
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
23
Graph of Cumulative Contaminated Water Use / Emission through Manufacturing Process
Cumulative Contaminated Water Use
16,000
14,000
kg contaminated water / hr
12,000
10,000
8,000
6,000
4,000
2,000
1
1a
2
3
3a
4
5
5a
6
7
8
9
10
11
12
13
14
15
16
16a
17
18
19
20
21
22
23
24
25
26
28
27
29
30
32
31
33
34
35
37
36
38
0
Process Stream
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
24
Graph of Cumulative Non-Contaminated Water Use / Emission through Manufacturing Process
Cumulative Non-Contamintated Water Use
300,000
kg non-contaminated water / hr
250,000
200,000
150,000
100,000
50,000
C1
C2
C3
C4
C5
C6
C7
C8
C9
C10
C11
C12
C13
C14
C15
C16
C17
C18
C19
C20
C21
C22
C23
C24
C25
C26
C27
C28
C29
C30
S1
S2
S3
S4
S5
S6
S7
S8
S9
S10
S11
S12
S13
S14
0
Process Stream
updated on 6/26/2010
25
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
Energy Input for each Unit Process, Cumulative Energy Requirements, Cooling Requirements (exotherms),
and Assumed Heat Recovery from Hot Streams Receiving Cooling
Reactor 2 and 3 are adiabatic, and the energy requirement should be zero. The non-zero calculated values appear in this Table as a check.
15.0 NA Hx7
E Di2
R3
Reactor 3
0
1375
549 NA Ref1
P4
Pump 4
1.36
1377
E
Di3
P5
MxE1
P6
Pump 5
Mixer electricity 1
Pump 6
4.35E-03
5.24
1.38
1377
1382
1383
E
E
E
Hx13
Hx14
Di4
Di1
Cumulative
energy [MJ /
1000 kg
Product]
Cumulative
recovered [MJ
/ 1000 kg
Product]
1310
1375
Energy
Recovered
0.838
65.0
Tef [C] (for
recovery
efficiency)
Recovery
Efficiency
Reactor 2
Blower 1
R1
Hx4
Hx5
Hx6
Hx1
Di1
Cumulative
cooling water
energy
R2
Blw1
E
E
E
-15.0 S
E
E
Energy Loss
611
663
663
1309
1309
1309
Unit
611
51.9
0.160
646
0.252
0.557
Process
diagram label
Compressor 1
Compressor 2
Pump 1
Heat exchanger 3
Pump 3
Pump 2
To [C]
(Used to
determine
Type
Energy
energy type)
Cmp1
Cmp2
P1
Hx3
P3
P2
Energy input
[MJ / 1000 kg
Product]
Unit
Cooling Requirements [MJ / hr]
Process
Diagram Label
Energy Input [MJ / hr]
Reactor 1
-1.37E+04
Heat exchanger 4
-3364
Heat exchanger 5
-4046
Heat exchanger 6
-168
Heat exchanger 1
-4167
Distillation
-4985
condenser 1
Heat exchanger 7
-123
Distillation
-273
condenser 2
Refrigerator cooling
-6.09
1
Distillation
-1166
condenser 3
Heat exchanger 13
-98.8
Heat exchanger 14
-6.79
Distillation
-187
condenser 4
Heat exchanger 11
-6.77
-1.37E+04
-1.70E+04
-2.11E+04
-2.12E+04
-2.54E+04
-3.04E+04
440
440
148
25.0
549
78.0
0.600
0.600
0.250
0
0.750
0.250
-8198
-2018
-1012
0
-3126
-1246
-3.05E+04
-3.08E+04
78.0
24.9
0.250
0
-30.9 -1.56E+04
0 -1.56E+04
-3.08E+04
25
0
0 -1.56E+04
-3.20E+04
76.9
0.250
-292 -1.59E+04
-3.21E+04
-3.21E+04
-3.22E+04
78.0
78.0
81.6
0.250
0.250
0.250
-24.7 -1.59E+04
-1.70 -1.59E+04
-46.8 -1.60E+04
-3.23E+04
81.6
0.250
-1.69 -1.60E+04
-3179
-3.54E+04
81.6
0.250
-795 -1.68E+04
Distillation reboiler
6518
7901 78.0 S Hx11
1
P7
Pump 7
0.0848
7902
E Hx12 Heat exchanger 12
P9
Pump 9
0.0848
7902
E
Di2
Distillation reboiler
270
8172 24.9 S
2
P10
Pump 10
0.0121
8172
E
updated on 6/26/2010
26
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
-8198
-1.02E+04
-1.12E+04
-1.12E+04
-1.44E+04
-1.56E+04
Ref1
P11
Hx10
P12
Di3
P13
P14
P8
Hx8
P15
Di4
P16
P17
Refrigerator elect. 1
Pump 11
Heat exchanger 10
Pump 12
Distillation reboiler
3
Pump 13
Pump 14
Pump 8
Heat exchanger 8
Pump 15
Distillation reboiler
4
Pump 16
Pump 17
Potential recovery
Net energy
Electricity
DowTherm
Heating steam
Direct fuel use
Heating natural gas
Diesel process
Undefined
Heating coal
Energy input
requirement
Cooling water
Cooling
refrigeration
Potential heat
recovery
Net energy
1.68
0.0741
104
0.0741
1164
8174
8174
8277
8278
9441
0E
E
78.0 S
E
76.9 S
0.0715
2.10E-03
1.20
203
1.20
187
9441
9441
9443
9645
9646
9833
E
E
E
81.6 S
E
81.6 S
3.36E-03
1.19
-1.68E+04
9833
9835
-6957
-6957
E
E
742 E
0D
9091 S
0F
0G
0 Ds
0U
0C
9834
Potential recovery:
[MJ/hr]
[MJ/hr]
[MJ/hr]
[MJ/hr]
[MJ/hr]
[MJ/hr]
[MJ/hr]
[MJ/hr]
[MJ/hr]
-3.54E+04
[MJ/hr]
[MJ/hr]
-1.68E+04
[MJ/hr]
-6958
[MJ/hr]
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
27
-1.68E+04
-2,000
-4,000
0
updated on 6/26/2010
Griffing and Overcash, Chemical Life Cycle Database, www.environmentalclarity.com, 1999-present.
-6,000
-8,000
Process Unit
28
Potential recovery
Pump 17
Pump 16
Distillation reboiler 4
Pump 15
Heat exchanger 8
Pump 8
Pump 14
Pump 13
Distillation reboiler 3
Pump 12
Heat exchanger 10
Pump 11
Refrigerator elect. 1
Pump 10
Distillation reboiler 2
Pump 9
Pump 7
Distillation reboiler 1
Pump 6
Mixer electricity 1
Pump 5
Pump 4
Reactor 3
Blower 1
Reactor 2
Pump 2
Pump 3
Heat exchanger 3
Pump 1
Compressor 2
Compressor 1
Start
MJ / hr
Graph of Cumulative Energy Requirements
Cumulative Energy Input
12,000
10,000
8,000
6,000
4,000
2,000