In[8]:= Clear@"Global`*"D; $Line = 0; In[1]:= Sin@3 xD + Cos@2 xD - Sin@xD 0; Replace Sin[3x] and Cos[2x] in In[1] above with 3 Sin@xD - 4 Sin@xD3 and 1 - 2 Sin@xD2 respectively. Simplify the result. In[2]:= Out[2]= %1 . 9 Sin@3 xD ® I3 Sin@xD - 4 Sin@xD3 M, Cos@2 xD ® I1 - 2 Sin@xD2 M= 1 + 2 Sin@xD - 2 Sin@xD2 - 4 Sin@xD3 0 Solve the above equation for x. %2 refers to Out[2]. In[3]:= Solve@%2, xD Solve::ifun : Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution information. Π Out[3]= ::x ® - Π >, :x ® - 4 Π >, :x ® 6 >> 4 Out[2] can aslo be factored. In[4]:= Out[4]= %2 Factor - H1 + 2 Sin@xDL I- 1 + 2 Sin@xD2 M 0 Verify the answers using the orginal equation. True means that the RHS and the LHS are equal after post substitution evaluation. In[5]:= Out[5]= %1 . %3 8True, True, True< Run Reduce per the recommendation of the In[3] alert. x is the independent variable and the domain is limited to real numbers. In[6]:= ReduceA1 + 2 Sin@xD - 2 Sin@xD2 - 4 Sin@xD3 0, x, RealsE 7Π Π Out[6]= C@1D Î Integers && x - + 2 Π C@1D ÈÈ x 6 5Π Π x- + 2 Π C@1D ÈÈ 6 + 2 Π C@1D ÈÈ x 4 3Π Π + 2 Π C@1D ÈÈ x 4 + 2 Π C@1D ÈÈ x 4 Evaluate the above with C[1] set to zero. In[7]:= %6 . C@1D ® 0 7Π Π Out[7]= x- ÈÈ x 6 6 5Π Π ÈÈ x - ÈÈ x 4 4 3Π Π ÈÈ x ÈÈ x 4 + 2 Π C@1D 4 4
© Copyright 2026 Paperzz