COLLEGE ALGEBRA
MATH 161
Section 1.4 PART 1
TEAGUE
Radical Equations
๐
๐
๐
๐ โ๐ = โ๐
Numerator is the power and the denominator is the index.
-92 = -81
(-9)2 = 81
โ(โ๐)๐ = ๐
๐๐
๐โ
๐
=๐
-(9)2 = -81
๐๐๐๐
๐โ
๐
๐โ๐ =
= ๐๐
๐
๐
25 3โ 125
Example 1) ( ) 2
๐๐ข๐ก ๐๐ ๐๐๐๐๐ข๐๐๐ก๐๐ ๐ข๐ ๐๐๐ ๐ด ๐โ๐ ๐๐๐ฆ ๐๐ ๐๐๐๐๐ก๐๐๐๐
64
512
3
3
2
Example 2) (โ16) โ2 = ๐๐๐๐๐ โโ16
๐๐ ๐ ๐๐๐ข๐ก๐๐๐ ๐๐๐๐๐ข๐ ๐ ๐ ๐๐ข๐๐๐ ๐๐๐๐ก ๐๐ ๐ ๐๐๐๐๐ก๐๐ฃ๐ ๐๐ข๐๐๐๐
2
3
2
Example 3) (โ512) โ3 = ๐๐๐๐๐ โโ512 =-64 because you can take cube root
of a negative number
Example 4) 64โ
5โ
3
*calculator work compute negative
64
Then negative exponent makes it
Example 5) ๐ฅ = 12โ๐ฅ
Example 6) โ2๐ฅ โ 4 = โ6
Square both sides ๐ฅ 2 = 144๐ฅ
๐ฅ 2 โ 144๐ฅ = 0
x = 0, 144
5โ
3 =1024
1
1024
x(x-144) = 0
NO SOLUTION BECAUSE SQUARE ROOT โ NEGATIVE
Example 7) 2+ โ4๐ฅ โ 3 = ๐ฅ move 2 to the right and
square both si des *use FOIL on the right
4๐ฅ โ 3 = ๐ฅ 2 โ 4๐ฅ + 4 ๏ฎ 0=๐ฅ 2 โ 8๐ฅ + 7 ๏ฎ(x-7)(x-1) x = 1,7
CHECK BOTH ANSWERS WITH RADICAL PROBLEMS
2+ โ4(1) โ 3 = (1)
2+ โ4(7) โ 3 = (7)
4 โ 1 NO
2+5 = 7 yes
{7}
square both sides ๐ฅ 2 = 4(2๐ฅ โ 4)
๐ฅ 2 = 8๐ฅ โ 16
๐ฅ 2 โ 8๐ฅ + 16 = 0
(๐ฅ โ 4)(๐ฅ โ 4) = 0
x=4
Example 8) ๐ฅ = 2โ2๐ฅ โ 4
Example 9) โ๐ฅ 2 โ ๐ฅ โ 6 = ๐ฅ + 4
Square both sides *use FOIL on the right
๐ฅ 2 โ ๐ฅ โ 6 = ๐ฅ 2 + 8๐ฅ + 16
โ9๐ฅ = 22
๐ฅ=โ
Example 10) ๐ฅ
๐ฅ
3โ
2
1โ
2
โ 40๐ฅ
=0
1โ
2
=0
(๐ฅ
1โ 2
2)
22
9
Use u substitution u3-40u=0
u = x1/2
u(u2-40)=0
u = 0 u2=40
= 40
x = 0 x = 40 ๏ฎ (0,40) always 0, the number in the problem
© Copyright 2026 Paperzz