Section 1-4 Part 1

COLLEGE ALGEBRA
MATH 161
Section 1.4 PART 1
TEAGUE
Radical Equations
๐’Ž
๐’
๐’Ž
๐’‚ โ„๐’ = โˆš๐’‚
Numerator is the power and the denominator is the index.
-92 = -81
(-9)2 = 81
โˆš(โˆ’๐Ÿ‘)๐Ÿ = ๐Ÿ‘
๐Ÿ๐Ÿ“
๐Ÿโ„
๐Ÿ
=๐Ÿ“
-(9)2 = -81
๐Ÿ๐ŸŽ๐ŸŽ๐ŸŽ
๐Ÿโ„
๐Ÿ‘
๐Ÿ”โˆ’๐Ÿ =
= ๐Ÿ๐ŸŽ
๐Ÿ
๐Ÿ”
25 3โ„ 125
Example 1) ( ) 2
๐‘๐‘ข๐‘ก ๐‘–๐‘› ๐‘๐‘Ž๐‘™๐‘๐‘ข๐‘™๐‘Ž๐‘ก๐‘œ๐‘Ÿ ๐‘ข๐‘ ๐‘–๐‘›๐‘” ๐ด ๐‘โ„๐‘ ๐‘˜๐‘’๐‘ฆ ๐‘Ž๐‘  ๐‘“๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘–๐‘œ๐‘›๐‘ 
64
512
3
3
2
Example 2) (โˆ’16) โ„2 = ๐‘š๐‘’๐‘Ž๐‘›๐‘  โˆšโˆ’16
๐‘›๐‘œ ๐‘ ๐‘œ๐‘™๐‘ข๐‘ก๐‘–๐‘œ๐‘› ๐‘๐‘’๐‘๐‘Ž๐‘ข๐‘ ๐‘’ ๐‘ ๐‘ž๐‘ข๐‘Ž๐‘Ÿ๐‘’ ๐‘Ÿ๐‘œ๐‘œ๐‘ก ๐‘œ๐‘“ ๐‘Ž ๐‘›๐‘’๐‘”๐‘Ž๐‘ก๐‘–๐‘ฃ๐‘’ ๐‘›๐‘ข๐‘š๐‘๐‘’๐‘Ÿ
2
3
2
Example 3) (โˆ’512) โ„3 = ๐‘š๐‘’๐‘Ž๐‘›๐‘  โˆšโˆ’512 =-64 because you can take cube root
of a negative number
Example 4) 64โˆ’
5โ„
3
*calculator work compute negative
64
Then negative exponent makes it
Example 5) ๐‘ฅ = 12โˆš๐‘ฅ
Example 6) โˆš2๐‘ฅ โˆ’ 4 = โˆ’6
Square both sides ๐‘ฅ 2 = 144๐‘ฅ
๐‘ฅ 2 โˆ’ 144๐‘ฅ = 0
x = 0, 144
5โ„
3 =1024
1
1024
x(x-144) = 0
NO SOLUTION BECAUSE SQUARE ROOT โ‰  NEGATIVE
Example 7) 2+ โˆš4๐‘ฅ โˆ’ 3 = ๐‘ฅ move 2 to the right and
square both si des *use FOIL on the right
4๐‘ฅ โˆ’ 3 = ๐‘ฅ 2 โˆ’ 4๐‘ฅ + 4 ๏‚ฎ 0=๐‘ฅ 2 โˆ’ 8๐‘ฅ + 7 ๏‚ฎ(x-7)(x-1) x = 1,7
CHECK BOTH ANSWERS WITH RADICAL PROBLEMS
2+ โˆš4(1) โˆ’ 3 = (1)
2+ โˆš4(7) โˆ’ 3 = (7)
4 โ‰  1 NO
2+5 = 7 yes
{7}
square both sides ๐‘ฅ 2 = 4(2๐‘ฅ โˆ’ 4)
๐‘ฅ 2 = 8๐‘ฅ โˆ’ 16
๐‘ฅ 2 โˆ’ 8๐‘ฅ + 16 = 0
(๐‘ฅ โˆ’ 4)(๐‘ฅ โˆ’ 4) = 0
x=4
Example 8) ๐‘ฅ = 2โˆš2๐‘ฅ โˆ’ 4
Example 9) โˆš๐‘ฅ 2 โˆ’ ๐‘ฅ โˆ’ 6 = ๐‘ฅ + 4
Square both sides *use FOIL on the right
๐‘ฅ 2 โˆ’ ๐‘ฅ โˆ’ 6 = ๐‘ฅ 2 + 8๐‘ฅ + 16
โˆ’9๐‘ฅ = 22
๐‘ฅ=โˆ’
Example 10) ๐‘ฅ
๐‘ฅ
3โ„
2
1โ„
2
โˆ’ 40๐‘ฅ
=0
1โ„
2
=0
(๐‘ฅ
1โ„ 2
2)
22
9
Use u substitution u3-40u=0
u = x1/2
u(u2-40)=0
u = 0 u2=40
= 40
x = 0 x = 40 ๏‚ฎ (0,40) always 0, the number in the problem