7 Serangoon Garden Secondary School Mid-Year Exam 2010 Sec 3E Add Maths QN 1 SOLUTIONS MARKS 4 x 6 y 34 ----------------------- (1) 2 2x 3 y 5 ----------------------- (2) e f a 3 y 2 x 5 -------------------- (3) From (2), M1 4 x 2 2(3 y ) 34 Subst (3) into (1) 4 x 2 2(2 x 5) 34 4 x 2 4 x 24 0 x2 x 6 0 x 2x 3 0 s h x 2 or x 3 When x 2 , y 3 When x 3 , t a M y 1 3 A is (-2, -3) and B (3, 2 2 2 A 3 8 e h A 1 T 1 ) 3 C M1 A1, A1 Q1: 5 marks 8 2 1 (2)(8) (2)(3) 3 2 1 8 2 = 22 3 2 B1 2 y 2 x 3 ---------------- (1) 8 y 3x 10 ----------------- (2) From (1) 2x 2 y 3 From (2) 3x 8 y 10 2 2 x 3 3 8 y 10 AddMaths/3E/MYE2010 M1 M1 8 x 1 8 2 3 y 22 3 2 10 M1 x 1 44 y 22 11 x 2 1 y 2 x 2, y A1, A1 x 2 x 1 q x 2 x (1 q ) 0 3(a) e f a 1 2 s h C b 2 4ac > 0 since the roots are real and distinct 12 411 q > 0 t a M 1 4 4q > 0 3 q> 4 Q 2: 5 marks M1 A1 y 2kx 10 (b) y x2 2 e h 2kx 10 x 2 2 T x 2 2kx 8 0 M1 Since the line does not intersect the curve, b 2 4ac < 0 2k 2 4(1)(8) < 0 M1 2k 2 32 < 0 k 2 16 < 0 k 4k 4 < 0 - 4< k < 4 M1 A1 Q3: 6 marks AddMaths/3E/MYE2010 9 y 2qx 3 px 8q 4. 2 b 2 4ac 0 3 p 42q 8q 0 2 M1 9 p 2 64q 2 0 9 p 2 64q 2 2 p 64 9 q M1 e f a p 64 9 q M1 p 8 3 q p 2 2 3 q 5(a) s h t a M 5 x 2 2 x 15 0 2 ; 3 5 2 4 2 2 = 2(3) 6 25 5 (i) (ii) 2 ( 2 2 ) 2 (iii) Subst x and x into 5 x 2 2 x 15 0 2 2 2 e h C p 2 or 2 (reject) 3 q 6 4 4 2(3) 12 25 25 A1 Q4: 4 marks M1 A1 A1 5 2 2 15 0 -------------- (1) 5 2 2 15 0 -------------- (2) T (1) 5 3 2 2 15 0 ---------------- (3) (1) 5 3 2 2 15 0 --------------- (4) (3) + (4) 5 3 5 3 2 2 2 2 15 15 0 5( 3 3 ) 2( 2 2 ) 15( ) 0 5( 3 3 ) 2(6 M1 4 2 ) 15( ) 0 25 5 ( 3 3 ) 3 AddMaths/3E/MYE2010 M1 83 125 A1 5(b) 10 1 1 1 1 1 ; 2 = 5 3 = M1 for both parts 1 3 = 2 15 e f a 2 1 Equation is x 2 x 0 15 3 x2 s h 6. C 2 1 x 0 or 15 x 2 2 x 5 0 15 3 t a M A1 If expression is given instead of equation, no mark given Q5: 8 marks 2 x 2 px 6 0 Let the two roots be and 2 e h 2 2 p ----------- (1) ; 2 2 3 ----------------- (2) 2 M1 for both eqns Form (2), 2 2 3 0 T 3 1 0 3 (NA since is positive ) or 1 Hence, the two roots are 1 and 3. From (1) 4 M1 A1 p 2 p 8 A1 Q6: 4 marks AddMaths/3E/MYE2010 11 7(i) Area of ABC = = 1 2 11 5 2 11 5 M1 11 5 2 2 = 11 – 5 = 6 cm 2 (ii) A1 11 5 11 5 = 11 2 11 5 5 11 2 = 16 2 55 16 2 55 2 AC 2 M1 11 5 5 = 32cm 2 8. 2m p pm = T s h t a M 2m p pm 2m p p 2m p = = e h e f a 2 2 p pm p pm pm 2m = 2 p pm m p pm Q7: 5 marks M1 2 p p m = C A1 p m pm M1 M1 M1 = 2 pm 2 p = 2( p m p ) (shown) A1 Q8: 4 marks AddMaths/3E/MYE2010 12 9(a) 8x 4 y 1 ---------------- (1) 32 9y 1 -------------- (2) 3 x7 From (1) 2 3 x 2 2 y 2 5 M1 3x 2 y 5 ------------- (3) From (2) e f a 32 y 30 3 x 7 2y x 7 0 x 2 y 7 ------------- (4) 4 x 12 (3) - (4) x 3 Subst x 3 into (4) t a M 1 5 x 2 25 4 x (b) 125 2 x 3 5 T A1 3( 2 x 3) M1 1 5 x 2 8 x 5 59 x 2 5 1 3( 2 x 3) 2 1 6 x 9 2 9 x 2 3x 4.5 x C A1 1 5 x 2 (5 2 ) 4 x e h s h y2 M1 M1 M1 5 or -0.2083 24 x 5 or -0.208 24 A1 Q9: 8 marks AddMaths/3E/MYE2010 13 2 log 3 a log 3 6 y 3 10(a) a2 3 6y log 3 M1 a2 33 6y M1 a 2 27 6 y y e f a a2 162 A1 log 3 x 6 log 3 x 4 log 9 x 2 (b) log 3 x 6 log 3 x 4 log 3 x 2 log 3 9 log 3 x 6 log 3 x 4 2 log 3 x 2 s h t a M x 6 x 4x x 2 5x 6 0 x 1x 6 0 x 1 (rej) or x 6 C M1 M1 A1, A1 Q10: 7 marks f x 6 x 3 x 2 11x m e h 11 (a) 2 x 2 x 3 2 x 3 x 1 (b)(i) T f 1 6(1) 3 (1) 2 11(1) m 0 m 6 M1 A1 1 g x x 3 4 x 2 2 1 g 2n (2n) 3 4 (2n) 2 2 3n 2 M1 1 (8n 3 ) 4 (4n 2 ) 2 3n 2 8n 3 18n 2 3n 2 0 (shown) AddMaths/3E/MYE2010 A1 14 Let h(n) 8n 18n 3n 2 (b) (ii) 3 2 h(2) 8(2) 3 18(2) 2 3(2) 2 0 Hence, n 2 is a factor. M1 8n 3 18n 2 3n 2 n 2 8n 2 An 1 18n 2 An 2 16n 2 A2 e f a 8n 3 18n 2 3n 2 n 2 8n 2 2n 1 = n 2 4n 12n 1 Hence, n 24n 12n 1 0 1 1 n 2, , 2 4 12. M1 A B C = x ( x 2) x 2 2 4 x Ax 2 B( x)( x 2) C ( x) e h 2 s h t a M 4 x 4 x 3 2 x 4 x 4 x x x 2 2 C A1, A1, A1 Q11: 9 marks M1 M1 When x 0 , 4 = A(2) 2 , A = 1 T When x 2 , 6 2C , C 3 When x 1 , 3 = A(9) +B(1)(3)+C(1) 3 = 9 + 3B – 3 3B = -3 B = -1 4 x 1 1 3 2 x 4 x 4 x x x 2 x 2 2 3 A1 for each correct part Q12: 5 marks AddMaths/3E/MYE2010 15 13(a) 8 (1) 9 1 1 3 (3) 6 2 Gradient of AB = 1 2 1 3 1 2 Gradient of BC = Equation of BC is y 8 M1 2 x 3 3 3 y 24 2 x 3 e f a A1 3 y 2 x 30 (b) Equation of AB is y 1 1 1 x 3 2 2 y 2 3( x 3) 2 y 3x 7 s h Let E be (0, y) and subst E (0, y) into 2 y 3 x 7 y 3.5 t a M Hence, E is (0, 3.5). C M1 A1 Let F be (x, 0) and subst F (x, 0) into 3 y 2 x 30 x 15 Hence, F is (15, 0). (c) e h A1 Let C be ( x, y ) . F is midpoint of B (3, 8) and C. 3 x 8 y (15,0) , 2 2 T M1 x 27, y 8 C is (27, -8) (d) Area of ABC = A1 1 3 3 27 3 2 8 1 8 8 M1 1 237 75 2 M1 = = 1 312 2 = 156 cm 2 A1 Q13: 10 marks AddMaths/3E/MYE2010
© Copyright 2026 Paperzz