THEOREMS IN TETRAHEDRON LEONARD GIUGIUC Lemma 0.1. Let ABCD be a tetrahedron. Then G = O if and only if ABCD is equifacial. Lemma 0.1’s proof (Leonard Giugiuc): ⇐ Let AB = CD = a, AC = BD = b and AD = BC = c. We have: −−→ −→ −−→ −−→ −→ −−→ !2 −→ AB + AC + AD AB + AC + AD 2 ⇒ ⇒ AG = AG = 4 4 −−→ −→ −→ −−→ −−→ −−→ AB 2 + AC 2 + AD2 + 2AB · AC + 2AC · AD + 2AB · AD = 16 a2 + b2 + c2 a2 + b2 + c2 + a2 + b2 − c2 − a2 + b2 + c2 + a2 − b2 + c2 = ⇒ = 16 8 r a2 + b2 + c2 ⇒ AG = 8 r a2 + b2 + c2 Due to the symmetry of the expression, get BG = CG = DG = 8 ⇒ G = O, hence −−→ −→ −−→ −−→ −→ −−→ !2 −→ AB + AC + AD AB + AC + AD 2 AO = ⇒R = ⇒ 4 4 AG2 = −−→ −→ −→ −−→ −−→ −−→ AB 2 + AC 2 + AD2 + 2AB · AC + 2AC · AD + 2AB · AD = 16 3(AB 2 + AC 2 + AD2 ) − (BC 2 + BD2 + CD2 ) = ; similarly, 16 3(AB 2 + BC 2 + BD2 ) − (AC 2 + AD2 + CD2 ) R2 = = 16 3(AC 2 + BC 2 + CD2 ) − (AB 2 + AD2 + BD2 ) = = 16 3(AD2 + BD2 + CD2 ) − (AB 2 + AC 2 + BC 2 ) = . 16 All of these gives us AB = CD, AC = BD and AD = BC. R2 = √ Theorem 0.2. In any tetrahedron ABCD, AG + BG + CG + DG ≤ 4 R2 − d2 , d = GO and the notations are as usual. Equality holds if f ABCD is equifacial. 1 2 LEONARD GIUGIUC Theorem 0.2’s proof (Leonard Giugiuc): −→ −−→ −−→ −−→ → −→ −−→ −−→ −−→ − We have: AG + BG + CG + DG = 0 ⇒ (AG + BG + CG + DG)2 = 0 ⇒ X X −→ −−→ AG·BG = 0 ⇒ 4(AG2 +BG2 +CG2 +DG2 ) = AB 2 . AG2 +BG2 +CG2 +DG2 +2 all all −→ −−→ −−→ −−→ −−→ −→ −−→ −−→ −−→ On the other hand, AO + BO + CO + DO = 4GO ⇒ (AO + BO + CO + DO)2 = = 16GO2 ⇒ X 16(R2 − d2 ) = AB 2 ⇒ 4(AG2 + BG2 + CG2 + DG2 ) = 16(R2 − d2 ). But all p 4(AG2 + BG2 + CG2 + DG2 ) = 4 R2 − d2 . We are done. p But AG + BG + CG + DG = 4(AG2 + BG2 + CG2 + DG2 ) if f AG = BG = CG = DG and by the lemma AG = BG = CG = DG if f ABCD is equifacial. AG+BG+CG+DG ≤ p Theorem 0.3. In any tetrahedron ABCD, 8R2 ≥ AB · CD + AC · BD + AD · BC. Equality holds if f ABCD is equifacial. Theorem 0.3’s proof (Leonard Giugiuc): We have: 2AB · CD ≤ AB 2 + CD2 , 2AC · BD ≤ AC 2 + BD2 and 2AD · BC ≤ AD2 + BC 2 ⇒ X 2(AB · CD + AC · BD + AD · BC) ≤ AB 2 = 16(R2 − d2 ) ≤ 16R2 . all Equality holds iff AB = CD, AC = BD and AD = BC. Theorem 0.4. In any tetrahedron ABCD, P √ all AB ≤ 4R 6. Theorem 0.4’s proof (Leonard Giugiuc): !2 X We have: AB ≤ 3(AB + CD)2 + 3(AC + BD)2 + 3(AD + BC)2 = all ! =3 X AB 2 +6(AB · CD + AC · BD + AD · BC) ≤ 48R2 + 48R2 ⇒ all ⇒ X √ AB ≤ 4R 6 all From above, clearly equality holds if f ABCD is equifacial. Mathematics Department, ”Theodor Costescu” National Economic College, Drobeta Turnu - Severin, MEHEDINTI. E-mail address: [email protected]
© Copyright 2026 Paperzz