CHAPTER 3. RULES FOR DERIVATIVES Example 1. Find d (3x + ex )(x2 dx 90 4ex ). Solution. Identify f and g: (3x + ex ) (x2 4ex ) | {z } | {z } g f Calculate f 0 and g 0 : f 0 = 3 + ex g 0 = 2x 4ex Put it all together using the product rule: f 0 · g + f · g 0 = (3 + ex )(x2 4ex ) + (3x + ex )(2x 4ex ). CHAPTER 3. RULES FOR DERIVATIVES d Example 2. Find (x + e3x dx Solution. Identify f and g: 1 ) ✓ ◆ 1 +x . x ◆ 1 ) +x } x | {z } 3x 1 (x + e | {z f Calculate f 0 and g 0 91 ✓ g f 0 = 1 + e3x 1 · 3 1 g0 = +1 x2 Put it all together using the product rule: ✓ ◆ ✓ ◆ 1 1 0 0 3x 1 3x 1 f · g + f · g = (1 + 3e )· + x + (x + e )· +1 x x2 CHAPTER 3. RULES FOR DERIVATIVES Example 3. Find 92 d 2x + 1 . dx ex + x Solution. Identify f and g 2x + 1 ex + x f g Calculate f 0 and g 0 f0 = 2 g 0 = ex + 1 Put it all together using the quotient rule f0 · g g2 f · g0 = 2(ex + x) (2x + 1)(ex + 1) (ex + x)2 CHAPTER 3. RULES FOR DERIVATIVES 93 p t+ t Example 4. Find the derivative of 2 . t + ln(t) Solution. Identify f and g p t+ t t2 + ln(t) f g Calculate f 0 and g 0 1 f0 = 1 + p 2 t 1 g 0 = 2t + t Put it all together using the quotient rule f0 · g g2 f · g0 = (1 + 2 1 p )(t2 + ln(t)) t (t + (t2 + ln(t))2 p t)(2t + 1 t )
© Copyright 2025 Paperzz