AP Calc Notes: MD – 2 Chain Rule Derivative of Nested Functions—see Russian nesting dolls Review Ex: a. d 5 x ) = 5x4 ( dx c. d 5 x + sin x ) = 5x4 + cos x ( dx d. d 5 x sin x ) = x5cos x + 5x4sinx ( dx e. d sin x x5 cos x − 5x 4 sin x = dx x 5 x10 f. d sin ( x5 ) = ? dx g. d ( sin 5 x ) = ? dx ( b. d ( sin x ) = cos x dx ) Need a rule for the derivative of a composition of functions: y(x) = f(g(x)) f(g(x)) − f(g(a)) x→a x−a y'(a) = lim f(g(x)) − f(g(a)) g(x) − g(a) f(g(x)) − f(g(a)) g(x) − g(a) = lim i i x→a x−a g(x) − g(a) x→a g(x) − g(a) x−a = lim f(g(x)) − f(g(a)) g(x) − g(a) i lim x→a x →a g(x) − g(a) x−a = lim y'(a) = f'(g(a)) g'(a) Since this works for any value of a, we have d f(g(x)) = f'(g(x))g'(x) dx The Chain Rule If y = f ( u ) and u = g ( x ) , then y = f(g(x)) and dy d = f(g(x)) = f'(g(x))g'(x) dx dx Derivative of the “outside” keep the “inside” Chain Rule, v 1.0 times the derivative of the “inside” If y = f ( u ) and u = g ( x ) , then dy du and g’(x) = so du dx f’(g(x)) = dy dy du = i dx du dx Ex: ( Chain Rule, v 2.0 ) d sin ( x5 ) = dx cos(x5)(5x4) = 5x4cos(x5) Ex: http://brownsharpie.courtneygibbo ns.org/?s=chain+rule d sin 5 x ) = ( dx d (sin x)5 = 5(sin x)4cos x = 5sin4x cosx dx Find the derivative of the following functions: a. f ( x ) = 4 x − 5 d d 1 4x − 5 = (4x - 5)1 / 2 = (4x-5) −1 / 2 (4) = dx dx 2 b. y = ( 3 x − 2 ) 4 dy = 4(3x - 2)3 (3) = 12(3x - 2)3 dx c. y = tan ( x) dy 1 sec2 x = sec2 x = dx 2 x 2 x 2 4x - 5 d. y = cos 2 x e. y = Recall: sin 2A = 2 sin A cos A 1 16 − x 2 f. y = cos3 ( 2 x ) dy = 3cos2 2x( − sin2x)(2) = − 6cos2 2x sin2x dx g. f ( x ) = tan 6 x3 π h. f ( x ) = sin 2 3 x − 4
© Copyright 2026 Paperzz