(x) C)x sin (x) )2x D)1 + x2 D)x sin (x2 ) Quiz 24 cos (4xZ2 ) x C)8x3 cos (4x2 ) F (x)Example = 11:+ t2 dt Z 2 0 5x 3 dx Math 1431 LAB session 15 D)32x3 cos (4x2 ) 0 ZZ 40 p p 3 dx2t dt (x) = tx2 + Z 1x 5 3 + 5x dx x2 1 Z 1 Z 4x2 p (x) = 4x3/2 + t cos dt 5 (t) x dx 0 0 Z 3 6x(3 + 2x2 ) dx ) 1 C)x sin (x) D)x sin (x2 ) Z ⇡ 2 sinx(x) dx x D)13 + 0 os (4x2 ) 16 C)8x3 cos (4x2 ) Z 2 5x 3 dx 0 Example 2: Z Z Z 4 1 5 1 1 p 3 x dx 3 + 5x dx x2 p 3 4x /2 + 5 x dx 0 Z 3 6x(3 + 2x2 ) dx 1 Z ⇡ 3 sin (x) dx 0 16 D)32x3 cos (4x2 ) 5x x 3 dx 0 Z 4 p 3 x dx 1 Z 4x2 Z 5 F (x) =3 + 5xtdx cos (t) dt 2 0 1 x Z 1 p 3/2 4x + 5 x dx n (x)0 C)x sin (x) D)x sin (x2 ) Z 3 ++ 2xx2 )2 dx C)2x 6x(3 D)1 Example 3: 1 Z ⇡ 2 3 2 x cos (4x ) C)8x cos (4x ) 3 sin (x) dx 2 0 Z Z 2 16 5x 3 dx 0 Z 4 p 3 x dx 1 5 3 + 5x dx 2 x 1 Example 4: Z 1 p 3/2 4x + 5 x dx 0 Z 3 6x(3 + 2x2 ) dx 1 Z ⇡ 3 sin (x) dx 0 16 D)32x3 cos (4x2 ) x2 cos (4xZ2 )4x2 C)8x3 cos (4x2 ) Z x F (x) =Question t# cos (t) dt 2 F (x) 1 + t dt Z =0 5 3x 0 D)32x3 cos (4x2 ) 4 dx 1 Z 16 p C)x sin (x) (x) D)x sin (x2 ) Z 50 px dx 1 2 F (x) = t 2 + 2t dt )2x ZD)1 6 x+ x 2 4x dx x 12 cos (4x ) C)8x3 cos (4x2 ) Z 1 p 3/2 4xZ 4x +2 5 x dx 0Z 5 F (x) t cos (t) dt Z = 3 (x) 4 dx 2 6x(3 + 2x 1 Question # ) dx 1 Z 0 3x Z 16 3⇡/2 p dxdx D)x sin (x2 ) C)x sinx(x) (x) 55cos ⇡/21 2 C)2x Z 6D)1 2 16+ x 4x dx x 1 2 x2 cos (4x ) Z C)8x3 cos (4x2 ) 1 4x 0 Z 3 Z 3/2 p + 5 x dx 5 3x 4 dx 1 2 6x(3 + 2x ) dx Z 16 1 p 5 x dx Z 3⇡ Question /2 1 # Z 6 5 cos (x) dx 2 ⇡/2 4x dx x 1 16 Z 1 p 3/2 4x + 5 x dx 0 Z 3 6x(3 + 2x2 ) dx 1 Z D)32x3 cos (4x2 ) 3⇡/2 5 cos (x) dx ⇡/2 16 D)32x3 cos (4x2 ) Z 1 0 4x 3/2 p + 5 x dx Example 5: 0 Z x) 3 C)x sin (x) 2 D)x sin (x2 ) 6x(3 + 2x ) dx 1 2 + x ZD)1 ⇡ 3 sin (x) dx 2 cos (4x0 ) C)8x3 cos (4x2 ) )2x Z Z Z 16 2 5x 3 dx 0 Z 4 p 3 x dx 1 5 1 3 + 5x dx x2 1 4x 3/2 p + 5 x dx 0 Z 3 1 6x(3 +6:2x Example Z 2 ) dx ⇡ 3 sin (x) dx 0 16 D)32x3 cos (4x2 ) x) = Example 7: Z 4 |x 1 3| dx Z 4 Example 8: |x Z 4 ( 1 ( 2x 3| dx1 if 0 x 2 9 3x if 2 < x < 3. Z 1 if 30 x 2 f (x) dx f (x)|x = 1 3| dx 2x 9Find3x if0 2 < x < 3. Z 3 f (x) dx 0 17 2x 1 if 0 x 2 9 3x if 2 < x < 3. Z 3 9: n (x)Example C)x sin (x) D)x sin (x2 ) f (x) dx (x) = 0 The graph of function f(x) is given on the right. Z x 2 C)2x D)1 + x F (x) = 2 f (t) dt 4 2 x cos (4x ) = Z Z C)8x3 cos (4x2 ) 5 3x 4 dx 1 Z Z Find F(3) 16 p 5 x dx 1 6 1 2 x 4x dx 3/2 p 1 4x + 5 x dx 0 Z 3 6x(3 + 2x2 ) dx 1 Question # Z 3⇡/2 5 cos (x) dx ⇡/2 16 17 Question # Z ( 6 3 |x 5| dx 2x 1 if 0 x 2 9 3x if 2 < x < 3. Z 3 f (x) dx D)32x3 cos (4x2 )
© Copyright 2026 Paperzz