ICES Journal of Marine Science, 53: 487–491. 1996 Comparison of acoustic backscatter measurements from a ship-mounted Acoustic Doppler Current Profiler and an EK500 scientific echo-sounder Gwyn Griffiths and José I. Diaz Griffiths, G. and Diaz, J. I. 1996. Comparison of acoustic backscatter measurements from a ship-mounted Acoustic Doppler Current Profiler and an EK500 scientific echo-sounder. – ICES Journal of Marine Science, 53: 487–491. We compare the calibration of a 150 kHz RD Instruments Acoustic Doppler Current Profiler against the 200 kHz channel of a SIMRAD EK500 scientific echo-sounder. Over a range of mean volume backscattering strength of "88 to "68 dB (relative to a scattering cross-section of 1 m "1), from 10 to 90 m depth, the data from the two instruments were well correlated but with significant slope and offset errors (~10% and &3 dB, respectively). After correction for these systematic errors the residual differences between the ADCP and the EK500 were less than 1 dB. This accuracy is sufficient for many qualitative studies of the coupling of ocean physics and biology. ? 1996 International Council for the Exploration of the Sea Key words: acoustic backscatter calibration, Acoustic Doppler Current Profiler, EK500, zooplankton. G. Griffiths: Southampton Oceanography Centre, Empress Dock, Southampton SO14 3ZH, England. J. I. Diaz: Institut de Ciencias del Mar (CSIC), Pasco Juan de Borbon S/N, 08039 Barcelona, Spain. Correspodence to Griffiths [tel: +44 1703 596004, fax: +44 1703 596149]. Introduction The instrumentation used to gather acoustic data on biological distributions includes commercial scientific echo-sounders, specialized research sounders, and, recently, a tool used primarily by physicists studying ocean currents, the Acoustic Doppler Current Profiler (ADCP), e.g. Heywood et al. (1991) and Roe and Griffiths (1993). These investigators used relative acoustic backscatter from the ADCP rather than calibrated mean volume backscattering strength (MVBS) because of the difficulties of calibration. More recently, papers using calibrations based on manufacturer’s data have appeared, e.g. Zhou et al. (1994). However, none of these papers has addressed the calibration problem through intercomparison. The RD Instruments ADCP was not designed to measure acoustic backscatter and, as a consequence, even as a single frequency sounder, it has its drawbacks. In this paper we deal with one drawback, the problem of calibration. It is impractical for the user to calibrate the instrument using the standard target method adopted by many researchers (e.g. MacLennan and Simmonds, 1992), because the four beams of the ADCP are inclined at 30) to the vertical and there is no aid to help position the target within the narrow (2.5)) beams. 1054–3139/96/020487+05 $18.00/0 However, it is possible to compare the acoustic backscatter measurements from an ADCP with those from a well-calibrated SIMRAD scientific echo-sounder. We show that the backscatter strength measurements from the ADCP have a linear relationship to those of the 200 kHz channel of a SIMRAD EK500. Equipment and methods The comparison between the ADCP and the EK500 was carried out on the ship ‘‘Hesperides’’ in May 1994. Data were gathered on a passage leg from Funchal, Madeira to Cartagena, Spain. Both instruments have a large number of user-selectable parameters, some of which are vital for optimum use of both instruments in this role. The main parameter settings are given in Table 1 and are discussed in more detail below. RD Instruments ADCP The ADCP uses four transducers with acoustic axes inclined at 30) to the vertical and driven by a common power amplifier, but with four separate receiver channels. On ‘‘Hesperides’’, data from the ADCP deck unit were acquired by a computer using the RD Instruments ? 1996 International Council for the Exploration of the Sea 488 G. Griffiths and J. I. Diaz Table 1. Main EK500 and ADCP parameters. Parameter Power output Transmit pulse length Receiver cell length Bandwidth Averaging interval MVBS resolution MVBS threshold EK500–200 kHz 1 0.45 0.02 20 23 0.01 "100 ADCP–150 kHz Units 24 8 8 Proprietary information 120 0.42 "112 at 200 m* "86 at 400 m kW metres metres kHz seconds dB dB *The ADCP does not operate with an explicit threshold. The values given in the table are for a 0 dB signal-to-noise ratio at the specified ranges. Transect software. Acoustic backscatter data from the four individual beams, in ensembles of four transmissions, were gathered at approximately 6 s intervals. Each of the four beams was calibrated separately to account for individual circuit and transducer parameters (Table 2). In addition, the user must estimate the noise floor for each beam. However, this cannot be done accurately when the vessel is moving, as flow noise is likely to be present and will add to the wanted instrument noise level. We adopted the procedure in RDI (1990) of using a short (1 m) transmit pulse length, and a long (16 m) receiver length interval, coupled with the maximum number of intervals (128) to allow the receiver outputs to reach the instrument noise level. As neither the transmitter nor the receiver of the ADCP are temperature-compensated, the temperatures of both the transducer and deck unit affect the calibration and need to be considered in the calibration equation. The ADCP records the backscatter strength in the form of Automatic Gain Control (AGC) counts; the counts from each beam may be calibrated to give MVBS expressed in decibels (dB) relative to an acoustic crosssection of 1 m "1. This form of MVBS is used in the signal-processing firmware of the EK500, and we adopted the same form for the ADCP. The MVBS for each beam is obtained from the raw AGC counts according to the following equation (RDI 1990): where K2 is the instrument-dependent system noise factor (dimensionless), Ks the frequency-dependent system constant, Kc the conversion factor for echo intensity (dB count "1), E the AGC counts in the ensemble and receiver interval considered, Er the instrument noise level (counts), r the range from the transducer to the Table 2. ADCP calibration parameters. Parameter Beam 1 Beam 2 Beam 3 Beam 4 Er noise counts K1c watts K2 noise factor 41 5.529 3.590 33 5.153 4.111 33 4.669 3.999 40 4.626 4.111 depth interval (m), c the speed of sound (1500 m s "1), P the pulse length (m), K1 a power output term dependent on system supply voltage, and á the absorption coefficient (dB m "1). The constants K2, Ks, Kc, K1 were supplied by RD Instruments, we measured Tx (20)C) and Er, and á was estimated at 0.049 dB m "1 by the Transect software which uses the sound absorption equations of Fisher and Simmons (1977). The electronics temperature was 27)C. SIMRAD EK500 The EK500 was fitted with three transceiver frequencies – 38 kHz and 120 kHz using split beam transducers and signal processing and a single beam 200 kHz transceiver although, unfortunately, the 120 kHz channel was faulty. During the comparison period, digital data from the EK500 were acquired by a PC connected to the serial interface. In contrast to the ADCP, the EK500 has a wellcontrolled acoustic backscatter intensity calibration. In this paper we assume that the absolute MVBS values from the EK500 at 200 kHz may have an error of &0.5 dB, based on the original calibration in 1990 by SIMRAD and the study of Simmonds (1990), who found the long-term stability of an earlier SIMRAD instrument (the EK400) to be better than 13% or 0.5 dB over 5 years. We used the default value built into the sounder for á, 0.053 dB m "1. Acoustic backscatter measurements 489 –60 –60 –61 ADCP 150 kHz MVBS (dB) –65 ADCP 150 kHz MVBS (dB) –62 –63 –64 –65 –66 –70 –75 –80 –67 –68 –85 –90 –69 –70 –75 –74 –73 –72 –71 –70 EK500 200 kHz MVBS (dB) –69 –68 Figure 1. Scatterplot of mean volume backscattering strength from the four beams of the ADCP at 150 kHz against the EK500 200 kHz channel, for a depth layer of 10–50 m. .=ADCP Beam 1; /=ADCP Beam 2; ,=ADCP Beam 3; 0=ADCP Beam 4. –85 –80 –75 –70 EK500 200 kHz MVBS (dB) –65 Figure 2. Scatterplot, and the linear regression, of the beam average ADCP at 150 kHz against the EK500 at 200 kHz, for depth layers of 10–50 m (upper cluster) and 50–90 m (lower cluster). The outliers in the lower cluster were due to interference signals at 200 kHz. The observations were taken on 21 May 1994 during daylight, prior to the onset of upward diel migration of zooplankton. Data processing The EK500 digital data were acquired for six 40 m layers centred on 30, 70, 110, 150, 190, and 230 m. MVBS data from individual pings were acquired at intervals varying between 2 and 6 sec. These data were later averaged into 2 min periods to correspond exactly with the 2 min periods of ADCP data, representing horizontal averages of some 700 m at the transit speed of 6 m s "1. All averages were arithmetically computed by converting from dB to linear units, averaging, then converting back to dB. The ADCP data, gathered in 8 m depth intervals, were averaged over five bins to correspond with the 40 m bins from the EK500. This procedure avoids tackling the very difficult issues involved in making ping-by-ping comparison of the two sounders because of their dissimilar spatial sampling characteristics. The footprints of the main beams of the four ADCP transducers were circular, with a diameter at 70 m depth of 4 m at the "3 dB points, spaced on a circle of 40 m radius. Samples from each beam were taken every 9 m along the track (1.5 sec ping interval at 6 m s "1). The footprint of the 200 kHz channel of the EK500 was somewhat larger, at 6 m diameter at 70 m depth, and adjacent samples were between 12 and 36 m apart along the track. Beams 3 and 4 of the ADCP most closely matched the spatial track of the EK500 footprint. Results Figure 1 shows the data from both instruments for the 30 m depth layer. Clearly, the calibrations applied to the four beams of the ADCP have failed to converge. Consistently, they are in increasing order: beam 1, beam 4, beam 2, beam 3. Slope and offset errors combined such that the ADCP recorded MVBS of 4–8 dB higher than the EK500. The slopes of regression for each ADCP beam against the EK500 were not statistically different at the 5% level of significance but the offsets for each beam were different at the 5% level of significance. Over the range of MVBS from "74 dB to "68 dB the difference between beam 1 and beam 3 was consistently 3.8 dB. However, the scatter between the EK500 200 kHz MVBS and that from an individual ADCP beam was much lower, the standard error of the residual being 0.58 dB. One set of points, at the lowest MVBS indicated by the EK500, was anomalous, and has been excluded from the analysis. The MVBS data at 30 m spanned a range of barely 6 dB during the 90 min comparison period. By using the beam average data for the 30 m and 70 m layers we extended this comparison range to 20 dB (Fig. 2). The gap between the two data clusters is due to the difference 490 G. Griffiths and J. I. Diaz Table 3. Correlation analysis for the EK500 at 200 kHz and the ADCP at 150 kHz for depth layers centred at 30 m and 70 m, for each beam and for the combined beams. The correlation statistics for the ADCP beam 1 and beam 4 data are shown for comparison. Correlation statistic Beam 1 and EK500 Beam 2 and EK500 Beam 3 and EK500 Beam 4 and EK500 Combined beams and EK500 ADCP Beam 1 and Beam 4 Slope Intercept Standard error of the slope Standard error of the intercept R2 F statistic Regression sum of squares Residuals sum of squares Standard error of the y estimate Degrees of freedom 0.895 "3.363 0.014 1.086 0.984 4069 3043 49.4 0.87 66 0.899 "0.680 0.014 1.095 0.984 4038 3072 50.2 0.87 66 0.928 2.815 0.013 1.015 0.987 5008 3271 43.1 0.81 66 0.901 "2.163 0.013 1.027 0.986 4618 3087 44.1 0.82 66 0.892 "1.963 0.012 0.940 0.989 5398 2842 30.5 0.73 58 0.994 "1.113 0.005 0.372 0.998 38 311 3935 8.4 0.32 82 in MVBS between the two layers. Some of the 70 m data points were in error. These were found to be noise spikes caused by other equipment on ‘‘Hesperides’’ interfering with the EK500. As they are clearly identifiable they have been excluded from the correlation analysis in Table 3. It is clear from the Table that the main cause of variability in the ADCP calibration was the different offsets of the four beams. Equation (1) shows that the source of offset error is Er, the noise counts value. A noise count error of one leads to an offset error of 0.42 dB. The implication from Figure 1 and Table 3 is that the noise counts we measured when stationary were not valid for the period of the comparison. Beams 3 and 4 of the ADCP most closely tracked the spatial sampling of the EK500 200 kHz beam, and in Table 3 these two beams have the highest values of R2. The significance of the higher R2 for beams 3 and 4 compared to beams 1 and 2 was examined after using a Fisher-z transformation on the values of R. At the 5% level of significance, all four of the correlation coefficients were shown to be samples of the same population, and so the higher values are not statistically significant. Conclusions Our data show that the RD Instruments ADCP estimate of calibrated MVBS at 150 kHz is highly correlated (R2 of 0.989) with the well-calibrated EK500’s 200 kHz channel over a range of MVBS from "88 to "68 dB. The slope of the correlation differs from unity, but this may well be due to the difference in frequency. The standard error of the difference between the beam average ADCP and 200 kHz EK500 for individual data points of 0.7 dB is encouragingly low. Systematic error in the individual beam ADCP absolute MVBS data was due primarily to uncertainty or error in the measurement of the noise levels of the four channels. This points to a need for further study of the method for obtaining estimates of noise levels and their application to the calibration of the instrument. Some of the systematic errors may be due to the difference in the angle of incidence of sound on the targets, 0) for the EK500 and 30) for the ADCP (Inigo Everson, pers. comm.). The implications of this comparison are that the ADCP, given careful application of the manufacturer’s calibration and particular attention to the measurement of the beam-by-beam noise levels, can give estimates of MVBS at the 95% confidence limits to better than &1.5 dB. This accuracy is sufficient for qualitative studies of the coupling of ocean physics and biology on the scales of 10 m in the vertical and 1 km in the horizontal. Acknowledgements Without the enthusiasm and help of M. Manriquez and P. Rodriguez this work could not have been completed. J. Rucabado kindly provided calibration data for the EK500. The British Council provided a travel grant for G.G. to work on the ‘‘Hesperides’’, and the analysis of the data was partially supported by the U.K. Defence Research Agency under contract PDN1A/201. Their support is gratefully acknowledged. References Fisher, F. H. and Simmons, V. P. 1977. Sound absorption in sea water. Journal of the Acoustical Society of America, 62: 558–564. Heywood, K. J., Scrope-Howe, S., and Barton, E. D. 1991. Estimation of zooplankton abundance from shipborne ADCP backscatter. Deep-Sea Research, 38: 677–691. MacLennan, D. N. and Simmonds, E. J. 1992. Fisheries acoustics. Chapman and Hall, London. 325 pp. Acoustic backscatter measurements RDI. 1990. Calculating absolute backscatter. Technical Bulletin ADCP-90-04, RD Instruments, San Diego, USA. 24 pp. Roe, H. S. J. and Griffiths, G. 1993. Biological information from an acoustic Doppler current profiler. Marine Biology, 115: 339–346. Simmonds, E. J. 1990. Very accurate calibration of a vertical echo sounder: a five-year assessment of performance and 491 accuracy. Rapports et Procès-Verbaux des Réunions du Conseil International pour l’Exploration de la Mer, 189: 183–191. Zhou, M., Nordhausen, W., and Huntley, M. 1994. ADCP measurements of the distribution and abundance of euphausiids near the Antarctic Peninsula in winter. Deep-Sea Research, 41: 1425–1445.
© Copyright 2026 Paperzz