2.3 Differentiation Rules for Products, Quotients, Secants, and Tangents Product Rule d [f ( x ) ! g ( x ) ] = f ( x ) g ' ( x ) + g ( x ) f ' ( x ) dx The 1st times the der. of the 2nd + the 2nd times the der. of the 1st. uv’+vu’ Ex. f(x) = (3x – 2x2)(5 + 4x) f’(x) = (3x – 2x2)(4) + (5 + 4x)(3 – 4x) f’(x) = 12x – 8x2 + 15 – 20x + 12x – 16x2 f’(x) = -24x2 + 4x + 15 d [ x sin x] = x cos x + sin x (1) = x cos x + sin x dx y = 2x cos x – 2 sin x y’ = (2x)(-sin x) + cos x (2) - 2 cos x = -2x sin x Quotient Rule g(x) f '(x) - f (x)g'(x) d È f ( x) ˘ = 2 Í ˙ g(x) dx Î g ( x) ˚ [ ] Differentiate 2x - 4x + 3 y= 2 - 3x 2 y’ = (2 – 3x) (4x – 4) - (2x2 – 4x + 3) (-3) (2 - 3x) 2 2 + 20x – 8) – (- 6x2 + 12x – 9) (-12x y’ = (2 - 3x) 2 + 8x + 1 -6x y’ = (2 - 3x) 2 2 1- cos x y= sin x (sin x)(sin x) - (1 - cos x)(cos x) y' = 2 (sin x) sin x - cos x + cos x y' = 2 sin x 2 1 - cos x y' = 2 sin x 2 Derivatives of Trigonometric Functions d [tan x]= sec 2 x dx d [cot x]= - csc 2 x dx d [sec x]= sec x tan x dx d [csc x]= - csc x cot x dx Differentiate y = x – tan x y = x sec x dy 2 = 1- sec x dx y’ = x(sec x tan x) + (sec x)(1) y’ = sec x(x tan x + 1)
© Copyright 2026 Paperzz