MATH 117 Angular Velocity More Practice Solns 1. A Chinook helicopter has blades that are 60 feet long that rotate at 225 revolutions per minute. (a) Compute the speed at the end of the rotating blade in mph. (b) Give the angular velocity in degrees per second. v = ω × r = 225 € rev (rad) min 1 mi × 60 ft × 2π × 60 × ≈ 963.9 mph min rev hr 5280 ft ω = 225 rev deg 1 min × 360 × = 1350º per sec min rev 60 sec 2. Another €helicopter has 50 ft blades that spin at 843 mph. Compute the angular velocity of the blades in (i) radians per hr (ii) degrees per hr (iii) degrees per sec, and (iv) rpm. 1 mi 1 ft (rad) (i) ω = v × = 843 × × 5280 = 89020.8 r hr 50 ft mi hr (rad) 180 deg × = 5,100,516.129º per hr hr π rad (ii) ω = 89020.8 € (iii) ω = 5,100,516.129 € (iv) ω = 89020.8 € deg 1 hr × ≈ 1416.81º per sec hr 3600 sec (rad) 1 rev 1 hr × × ≈ 236.135 rpm hr (2π) rad 60 min € 3. A car’s tires have a 10 in. radius and are spinning at 60 mph. Compute the angular velocity of the tires in (i) radians per hr (ii) degrees per hr (iii) degrees per sec, and (iv) rpm. 1 mi 1 in ft (rad) (i) ω = v × = 60 × ×12 × 5280 = 380160 r hr 10 in ft mi hr (ii) ω = 380160 € (rad) 180 deg × = 21,781,563.54º per hr hr π rad (iii) ω = 21,781,563.54 € (iv) ω = 380160 € € deg 1 hr × ≈ 6050.434º per sec hr 3600 sec (rad) 1 rev 1 hr × × ≈ 1008.4 rpm hr (2π) rad 60 min 4. A cyclist rides around a circular track at a constant speed completing one lap in 45 minutes. The track has a 3-mile radius. (a) Compute the cyclist’s speed. (b) Compute the angular velocity in degrees per hr. Note: 45 min = ¾ hr = 0.75 hr v =ω × r = ω= € 2π (rad) × 3 mi ≈ 25.1327 mph 0.75 hr 360º ≈ 480º per hour 0.75 hr € 5. The radius of Earth is about 3963.2 miles and it completes one rotation in 23 hr, 56 min, 4.1 sec. (a) Find the speed of the rotation at 24º 12’ South latitude. v =ω × r = 2π (rad) × 3963.2cos(−24.2o ) mi ≈ 948.97 mph (23 + 56 /60 + 4.1/3600) hr € (b) A newly discovered planet has a radius 4.46 times that of Earth’s and completes one rotation on its axis in 15 hr, 39 min. Find the speed of its equatorial rotation in mph and its angular velocity in deg per hr. v =ω × r = 2 π (rad) × ( 4.46 × 3963.2 miles) ≈ 7,096.535 mph (15 + 39 /60) hr ω= € € 360º ≈ 23º per hour (15 + 39 /60) hr
© Copyright 2025 Paperzz