Differential Calculus 201-103-RE Vincent Carrier Exercise Sheet 19 5.6 Exponential and Logarithmic Equations Solve the following equations. 1. 2e−3x + 1 = 5 2. (ex − 3)(ex − 5) = 0 3. (ex − 2)(ex + 4) = 0 4. ee − π = 0 5. e2x − 5ex + 6 = 0 6. 3 ln 2x + 7 = −2 7. 4 ln(−3x) − 3 = 5 8. ln ln x − e = 0 9. ln eln e x ln x =3 Find the value(s) of x at which the tangent line is horizontal. 10. y = e5x − e3x 13. y = ln3 2x x4 11. y = x3 ln2 4x 14. y = 12. y = ln e6x − 2x e4x e2x − 3 15. y = 2 ln x + 5 ln ln(3x) 16. Find the equation of the tangent line to the curve y = e−2x parallel to the line y = −6x − 9. 17. Find the equation of the tangent line to the curve y = x ln 5x perpendicular to the line 1 y = x + 7. 2 5.7 Logarithmic Differentiation Find the derivative of the following functions. 18. y = xx 2 21. y = (x2 + 1) 19. y = (ln x)e √ x x 22. y = (arctan x)tan x x 24. y = xx ln x 25. y = xx r 27. y = x2 e3x 45x 67x 28. y = 3 sec2 x tan4 x ex arcsin x 20. y = √ 1/x x 23. y = (cos 3x)sin 2x 26. y = ex 29. y = ex x5 e−4x ln3 2x sin2 3x cos4 5x Answers: ln 2 3 2. x = ln 3, ln 5 3. x = ln 2 4. x = ln ln π 5. x = ln 2, ln 3 6. x = 1. x = − 7. x = − e2 3 8. x = ee dy 1 10. = e3x (5e2x − 3); x = ln dx 2 3 5 e 1 2e3 9. x = e3 11. dy 1 1 = x2 ln 4x (3 ln 4x + 2); x = 0, , 2/3 dx 4 4e 12. dy 2(3e6x − 1) ln 3 = 6x ; x=− dx e − 2x 6 13. 1 e3/4 dy ln2 2x (3 − 4 ln 2x) ; x= , = 5 dx x 2 2 14. dy 2e4x (e2x − 6) ln 6 = ; x= dx (e2x − 3)2 2 15. dy 2 ln 3x + 5 1 = ; x = 5/2 dx x ln 3x 3e 16. y = −6x + 3(1 − ln 3) 18. 2 dy = xx x(2 ln x + 1) dx 17. y = −2x − 19. 1 5e3 x dy 1 = (ln x)e ex ln ln x + dx x ln x 2 √ 1 − ln x dy 2x3/2 2 x ln(x + 1) √ = (x + 1) 21. + 2 2x2 dx x +1 2 x dy tan x tan x 2 22. = (arctan x) sec x ln arctan x + dx (1 + x2 ) arctan x √ 1/x dy = x 20. dx 23. dy = (cos 3x)sin 2x (2 cos 2x ln cos 3x − 3 sin 2x tan 3x) dx dy = xx ln x ln x (ln x + 2) dx ex x dy 1 26. = ex xe ex ln x + dx x 24. dy 1 28. = dx 3 29. r 3 sec2 x tan4 x ex arcsin x dy x5 e−4x ln3 2x = dx sin2 3x cos4 5x x dy 1 = xx xx ln x ln x + 1 + dx x ln x dy 2 27. = x2 e3x 45x 67x + 3 + 5 ln 4 + 7 ln 6 dx x 25. 4 sec2 x 1 2 tan x + −1− √ 2 tan x 1 − x arcsin x 5 3 −4+ − 6 cot 3x + 20 tan 5x x x ln 2x
© Copyright 2025 Paperzz