Mathematicsandknowledge TOKmathguestlecturebyMr.Chase IsMathematicsInventedorDiscovered? Classicquestioninthephilosophyofmathematics,thatmaybeyou'vealreadythought aboutortalkedaboutinthisclass: Ismathematicsinventedordiscovered? Poll:Hereareyouroptions: 1. Invented 2. Discovered 3. Unresolvable 4. Idon’tknow [Giveaminuteforstudentstothink,thenhavethemraisehandsandtallythevote.]Keepin mindtheoptionsI’veallowedforinthispollbecausetheymightforeshadowsomethinglater inthistalk.[thenotionofundecidablestatements] Herearethetypicalargumentsonbothsidesoftheissue. Invented: Aristotle would have been in this camp. People say things like “Newton and Leibniz invented Calculus.” Someone invents a new algorithm for something. Surely long divisionwasinvented,notdiscovered,youwouldsay.Surelywecameupwithournumber systemandweinventedalltheconventionsandsymbolsweuse.And,tocounterthosewho mightclaimthatmathematicsisdiscovered:ifamathematicaltheorygoesundiscovered,does ittrulyexist?(Ifatreefallsinthewoods…) 1aprimeorcomposite?(In1903, Discovered:Platowouldhavebeeninthiscamp.Is2 Frank Nelson Cole proved it was composite in a famous lecture without words, simply by writingthefactorsontheboardandmultiplyingitout.Itwasactuallyknowntobecomposite since1876...that’salmost30yearsofnooneknowingthefactors!)Manypeopledidn'tknow foryears,eventhoughclearlythere’sananswer.Onceitwasknown,Ithinkwemightsayit wasdiscovered.Isthetwinprimeconjecturetrue?[haveastudentdefinewhattwinprimes are, if a student is able.] Well, someone will invent a proof, but its truth is itself transcendent.Thisisanexampleofsomethingstillyettobediscovered.Actually,progresson thisparticularquestionhasbeenmadeinthelastyear! [Handout–outlineofthetalk/quotes/jokes] Thebeautyofmathematics—or“whydiscoveredistherightanswertothefirstquestion”:‐) [ShowthisGeogebraappletwithquadrilateralparallelogramtheoreminteractively...thenask kids if this is a coincidence. Can they prove it? It's either true or false. But you have 1always aninsatiabledesiretotrytoproveit—aholeinyourmathematicalheart!][Is9 divisibleby8?][HowcanyouprovethattwopeopleinDChavethesamenumberofhairson theirheads?][talkaboutexistenceproofsvs.constructiveproofs,iftimeallows] Make nomistake, I aminPlato’scamp onthisone.Ithink mathematicsisdiscovered.The mathematics that we think of as having been ‘invented’ is merely a shadow of the true mathematics, projected into our temporal reality (to borrow Platonist language). Mathematicsispure. <takenfromxkcd.com> “Mathematicsisaqueenofscience.”‐CarlFriedrichGauss Yousee,mathisaboutbeautyandpurity.Thatrealizationiswhatturnsyoung,unsuspecting studentsintomathematicians.“Someofyoumayhavemetmathematiciansandwonderedhow theygotthatway.”‐TomLehrer:‐)Howdoyouknowwhenamathematicianishardatwork? Ifyouwalkintothehallsofamathdepartmentandseeonemathematicianbusilyworkingon hiscomputertypingupapaperorworkingonalecture,heisnotactuallydoingwork.Ifyou seeanothermathematicianstaringoutthewindow,heistheonehardatwork! No, really, it’s true. Mathematicians do mathematics because it is beautiful, regardless of whetheritmightalsobeuseful: o o o “Whereverthereisnumber,thereisbeauty.”‐Proclus(addtothatlogic,variable,and proof…notjustnumber) “It is impossible to be a mathematician without being a poet in soul.” ‐ Sofia Kovalevskaya “Themathematiciandoesnotstudypuremathematicsbecauseitisuseful;hestudies itbecausehedelightsinitandhedelightsinitbecauseitisbeautiful.”‐JulesHenri Poincaré Insomeways,itprovidesasafeharborfromthedisorderandchaosoftherealworld.Math issopureandcertainthatwecanavoidthedebatesanddeconstructionismthatplaguesso manyotheracademicareas: <takenfromxkcd.com> Yes,I'minthediscoveredcampwhenitcomestotheopeningquestion.Mathhasalwaysbeen thesame.Ifyouweretogotoadifferentplanet,mathwouldstillbethesame(maybedifferent axiomsystems,maybetheywoulduseadifferentbase,andtheywouldofcourseusedifferent symbols,buttheywouldarriveatthesamemathematics,andthesametheorems).Peoplesay “math hasn't changed in 30 years since when I was in school.” True. It's worse than that, actually.Ithasn'tchangedin4.6billionyears!That'sonereasonwhymathissobeautiful,so austere. Whatpartsofmathematicsarewefreetoinvent? “Ourbasetennumbersystemwasinvented.”Icompletelyagree.Butthebeautyofmathis thatthebaseinwhichwedoitdoesn’tactuallymatter.Allofourtheoremsstillworkinother bases.Thechoiceofbaseisarbitrary.Oursymbolsarearbitrary. Thisbridgesustothenotionofformalism: “Mathematicsisagameplayedaccordingtocertainsimpleruleswithmeaninglessmarks onpaper.”‐DavidHilbert Hilbert’squotemightseemfunnytoyou,butit’saperfectdescriptionofmathematics.Atone time, it seemed that mathematics was immutable. You might say “1+1=2” is founded in reality—it’s an immutable, unchangeable reality over which you have no say. But mathematicianshaveaslightlybroaderviewthanthat.Wesetupaxiomsystemsandthen usingsimplesetsofaxioms,weproveawholehostofresults.Generally,wewanttheserules toconfirmourintuitionsandreflecttruthintheoutsideworldinameaningfulway,butthis isn’tnecessary.Forexample,alloftherulesofalgebrathatyouknowandlovearebasedon justasmallsetofaxioms,calledtheFieldAxioms(takenfromWikipedia): [Handout–fieldaxiomsandRudinproofs] ClosureofFunderadditionandmultiplication For all a, b in F, both a + b and a · b are in F (or more formally, + and · are binary operationsonF). Associativityofadditionandmultiplication Foralla,b,andcinF,thefollowingequalitieshold:a+(b+c)=(a+b)+canda·(b·c)= (a·b)·c. Commutativityofadditionandmultiplication ForallaandbinF,thefollowingequalitieshold:a+b=b+aanda·b=b·a. Existenceofadditiveandmultiplicativeidentityelements ThereexistsanelementofF,calledtheadditiveidentityelementanddenotedby0,suchthat forallainF,a+0=a.Likewise,thereisanelement,calledthemultiplicativeidentityelement anddenotedby1,suchthatforallainF,a·1=a.Toexcludethetrivialring,theadditive identityandthemultiplicativeidentityarerequiredtobedistinct. Existenceofadditiveinversesandmultiplicativeinverses For every a in F, there exists an element −a in F, such that a + (−a) = 0. Similarly, for any a in F other than 0, there exists an element a−1 in F, such that a · a−1 = 1. (The elements a + (−b) and a · b−1 are also denoted a − b and a/b, respectively.) In other words,subtractionanddivisionoperationsexist. Distributivityofmultiplicationoveraddition Foralla,bandcinF,thefollowingequalityholds:a·(b+c)=(a·b)+(a·c). These are the “simple rules” with which we “play the game” of mathematics. From these simpleaxioms,thenotionofsubtractionanddivisioncanbederived,thenotionofexponents &logarithms,androots.Thisistheentiresubjectofinterestinananalysiscourse,ifyouhave the privilege of taking one someday. For example, people wonder why a negative times a negativeisapositive.Here’stheanswer:Wecanproveitfromthefieldaxioms!Ifwedon’t defineitthatway,wegetcontradictions.This,tome,isamuchmorepowerfulandappealing argumentthanthosewhotrytojustifyitwithrealworldsituations.Thisbecomestrueforso manyothersimilarquestionstoo—whycan’twedividebyzero?whyisittruethat0times anynumberis0?or1timesanynumberisitself?whyisanumberraisedtothezeropower equalto1?Inalloftheanswerstothesequestions,ourhandisforcedbyoursetofaxioms (which,Iremindyou,wefreelychose). Proposition1.14fromRudin.Theaxiomsforadditionimplythefollowingstatements. (a) If then (cancellation) (b) If then 0(uniquenessoftheadditiveidentity) (c) If 0then (uniquenessoftheadditiveinverse) (d) (doublenegation) Proof.If ,theaxiomsforadditiongive 0 0 . Thisproves(a).Take 0in(a)toobtain(b).Take in(a)toobtain(c).Since 0,(c)(with– inplaceof )gives(d).∎ Proposition1.15fromRudin.Theaxiomsformultiplicationimplythefollowingstatements. (a) If 0and then (cancellation) (b) If 0and then 1(uniquenessofthemultiplicativeidentity) (c) If 0and 1then 1/ (uniquenessofthemultiplicativeinverse) (d) If 0then1/ 1/ . Proposition1.16fromRudin.Thefieldaxiomsimplythefollowingstatements,forany , , and ∈ . (a) 0 0. (b) If 0and 0then 0. (c) . (d) Proof. 0 assume 0 0, 0 0 0,but 0 . Hence 1.14(b) implies that 0 0.Then(a)gives 1 1 1 1 1 0 0, and (a) holds. Next, 0 acontradiction.Thus(b)holds.Thefirstequalityin(c)comesfrom 0 0, combinedwith1.14(c);theotherhalfof(c)isprovedinthesameway.Finally, by(c)and1.14(d).∎ [Passoutanalysistextbooksforstudentstoskim] Ifyouwanttobreakanyofthefieldaxioms,youmay.Youjustcan’tcallthealgebraicstructure thatyou’reworkingwithafield.Forexample,theabsenceofmultiplicativeinversesgivesrise tothenotionofaring,whichisalsoaveryimportantideainmathematics(albeitoneyou won’tencounterinhighschool). [Passoutalgebratextbooksforstudentstoskim] Well‐formedformulas.“Thetidyloveperforatesmachines.”“Thrhemmeajajaj”“Threeand fivearetwenty.”areallwrong,butforverydifferentreasons(semantics,syntax,...)[struck forthesakeoftime] KurtGödelprovedsomepath‐breakingresultsinmathematicallogic.Heshowedthatinany axiomsystem,therewillalwaysremainstatementsthatyoucannotprovetrueorfalse.For example: Axioms: “itisrainingoutside.” “ifitisraining,Iwilltakeanumbrella” Statements: “Iwilltakeanumbrella.”–provablytrueinthisaxiomsystem “Itisnotrainingoutside.”–provablyfalseinthisaxiomsystem “Ifitisraining,Iwillbringmypethamsteraswell.”–undecidableinthis axiomsystem Okay, then, you might say, “let’s just expand the axiom system until it can speak about hamsters.”Youcantrytodothat,butwhatGödelshowedisthatthisisafool’serrand.You can try to expand your axiom system so that your system is complete—that is, every statementcanbeassignedavalueoftrueorfalse—butthenyoursystemwillnecessarilybe inconsistent. At one time, mathematicians hadn’t really encountered such ‘undecidable’ statements in mathematics.Butnow,thankstoGödel’swork,weknowofmany:TheContinuumHypothesis, TheAxiomofChoice,Hilbert’sTenthProblem,andTheHaltingProblem.Somathematicians, now,areinterestedinthreetypesofresultswhenconsideringaconjecture:Provablytrue, provablyfalse,orundecidable. Ifastatementisundecidable,thisalsomeansthatwecanchoosethestatementtobetrueor falseandineithercaseitwillbeconsistentwithalltheotherstatementsinthesystem. Furthermore,heprovedthatifanaxiomsystemiscomplete(thatis,weavoidallundecidable statements),thenitnecessarilyhasinternalinconsistencies. [PassoutRebeccaGoldstein’sbookIncompleteness] Theusefulnessofmathematics “It’slikeagorgeouspaintingthatalsofunctionsasadishwasher!”–BenOrlin Mathematicsjusthappenstoalsobeuseful.Butitscorrelationtotherealworldisactually quiteunreasonable.Whyshoulditbetruethatwhenweplaywithmathinasterileroomand discoverinterestingmathematics,thatitapplytoordescribetherealworldatall??It’sreally mind‐blowing. The fact that mathematics so accurately describes the real world is more support for the Platonic view. We invent notation, true. But the actual mathematics describes real world phenomenon—like the interaction of particles or the growth of populations. We would certainly agree that these other aspects of reality—biology, chemistry, and physics—are discovered.Peoplediscoveratoms,thentheyinventanameforthem. Ajustificationofmatheducation Many educational reformers would want you to learn math because it prepares you for a futureworkingforSpaceXordecryptingstatesecretsattheNSA.Thisistrue.Mathematics provides an excellent foundation for a cadre of high‐powered careers that reward mathematicalintelligence. Butinmyopinion,thereasonmathisimportantforyoutolearnisbecauseitisbeautifuland interesting,notnecessarilybecauseitisuseful.Ourgoalasmathteachersistoprovideyou withaliberaleducation(meaning,onethatfreesyou)sothatyoucanappreciatethebeautiful thingsandengageinintelligentconversationwithallkindsofpeople.Somepeoplethinkthe goalofeducationistomakeyouagoodcitizen,tomakeyousuccessfulorrich,ortolandyou ajob.ButIhaveaslightlymorereligiousmotivation...it’ssothatyou’llglimpsethemindof God! Inreality,99%ofyouwon’tdirectlyuseanyofthemathyoulearn.Depressing?Itshouldn’t be. The same is true for all your other high school subjects. We’re giving you a liberal education. Conclusion Mathispure,beautiful,certain.Andby“math”wealsomeanlogic,formalsystems,games, rules, reasoning, argument. It is discovered, not invented, though our notation and many otherstructuresareinventedarbitrarily.Unlikeotherarenas,wecantrulybecertainwith mathinwaysthatnoothersubjectcanenjoy.
© Copyright 2026 Paperzz