Sine Limit Examples We begin by introducing the following two rules: sin kx kx (i) lim =1 and (ii) lim =1 x→0 kx x→0 sin kx For example we can say: sin 5x lim =1 x→0 5x or Example 1 4 sin 4x sin 4x = lim lim x→0 x→0 x 4x sin 4x = 4 lim x→0 4x = 4(1) = 4. 3θ lim =1 θ→0 sin 3θ for k ∈ R and k 6= 0. or sin − 21 x lim =1 x→0 − 12 x Multiplying top and bottom by 4 Applying rule (i) above Example 2 6x 3x = lim Multiplying top and bottom by 2 lim x→0 2 sin 6x x→0 sin 6x 1 6x = lim x→0 2 sin 6x 1 (1) Applying rule (ii) above = 2 1 = . 2 Example 3 3x 3x = lim sin 4x lim x→0 x→0 tan 4x cos 4x 3x cos 4x = lim x→0 sin 4x x = 3 lim (cos 4x) x→0 sin 4x x = 3 lim cos 4x lim x→0 x→0 sin 4x 1 4x = 3 lim cos 4x lim x→0 4 x→0 sin 4x 3 = . 4 Material developed by the Department of Mathematics & Statistics, N.U.I. Maynooth and supported by the NDLR (www.ndlr.com). 1 Try the following exercises for practice: (a) sin 7x x→0 x lim (b) x x→0 sin 8x lim (c) lim x→0 sin 7x 3x (d) tan t t→0 t lim (e) 5 sin θ θ→0 θ lim Solutions (a) 7 (b) 81 (c) 73 (d) 1 (e) 5 2
© Copyright 2026 Paperzz