Arkansas Tech University MATH 2924: Calculus II Dr. Marcel B. Finan Solutions to Assignment 6.2 Exercise 3 Let u = cos x then du = − sin xdx. Thus, Z π/2 Z π/2 7 5 (1 − cos2 x)3 sin x cos5 xdx sin x cos xdx = 0 0 Z 1 Z 1 2 3 5 = (1 − u ) u du = (1 − 3u2 + 3u4 − u6 )u5 du 0 0 u6 3 3 1 = − u8 + u10 − u12 6 8 10 12 1 = 120 1 0 Exercise 5 Using the trigonometric identity 1 + cos 2x 2 cos2 x = we find Z π/2 2 π/2 Z cos xdx = 0 0 1 = 2 Z 1 + cos 2x dx 2 π/2 (1 + cos 2x)dx 0 1 sin 2x π/2 = x+ 2 2 0 π = 4 Exercise 7 Letting u = 2x and using the trigonometric identity cos2 u = 1 + cos 2u 2 1 we find Z 0 π Z Z 1 2π 1 2π 1 + cos 2u 2 2 2 cos 2xdx = [cos u] du = du 2 0 2 0 2 Z 1 2π = (1 + 2 cos 2u + cos2 2u)du 8 0 u sin 4u 2π 1 = u + sin 2u + + 8 2 8 0 3π = 8 4 Exercise 11 Using integration by parts with u = t and v 0 = sin2 t, we have Z Z t sin 2t 1 sin 2t 2 t sin tdt = t− − t− dt 2 2 2 2 t sin 2t t2 cos 2t = t− − − +C 2 2 4 8 t cos 2t t2 +C = − sin 2t − 4 4 8 Exercise 17 Letting u = sec x so that du = tan x sec xdx, we have Z Z u3 tan x sec3 xdx = u2 du = +C 3 sec3 x = +C 3 Exercise 21 Letting u = tan x so that du = sec x2 dx, we have Z Z 4 6 tan x sec xdx = u4 (u2 + 1)2 du Z u9 2 7 u5 = (u8 + 2u6 + u4 )du = + u + +C 9 7 5 tan9 x 2 tan5 x = + tan7 x + +C 9 7 5 2 Exercise 27 Letting u = tan x so that du = sec2 xdx and using Example 7 of the book, we have Z Z Z 5 3 2 tan xdx = tan x tan xdx = tan3 x(sec2 x − 1)dx Z Z 3 2 = tan x sec xdx − tan3 xdx = tan4 x tan2 x − + ln | sec x| + C 4 2 Exercise 33 Using the fact that (csc x − cot x)0 = − csc x cot x + csc2 x = csc x(csc x − cot x) we have Z csc x(csc x − cot x) dx csc x − cot x Z (csc x − cot x)0 = dx csc x − cot x = ln | csc x − cot x| + C Z csc xdx = Exercise 39 √ Let x = 2 sin θ with − π2 < θ < π2 . Then 4 − x2 = 2 cos θ. We have Z Z 2 cos θ dx √ = dθ 2 2 4 sin2 θ(2 cos θ) x 4−x Z 1 1 = csc2 θdθ = − cot θ 4 4 √ 2 4−x =− +C 4x 3 Exercise 40 √ Let x = 2 tan θ with − π2 < θ < π2 . Then x2 + 4 = 2 sec θ. We have Z Z 8 tan3 θ(2 sec2 θ) x3 √ dx = dθ 2 sec θ x2 + 4 Z Z tan3 θ sec θdθ = 8 (sec2 θ − 1) tan θ sec θdθ 3 Z sec θ 2 =8 (u − 1)du = 8 − sec θ + C 3 p p 1 = (x2 + 4) x2 + 4 − 4 x2 + 4 + C 3 =8 Exercise 41 √ Let x = 2 sec θ with 0 < θ < π2 or π < θ < 3π x2 − 4 = 2 tan θ. We 2 . Then have Z Z √ 2 x −4 2 tan θ(2 sec θ tan θ) dx = dθ x 2 sec θ Z Z =2 tan2 θdθ = 2 (sec2 θ − 1)dθ x p =2 tan θ − 2θ + C = x2 − 4 − 2 sec−1 +C 2 4 Exercise 45 Let x = a tan θ with − π2 < θ < a sec2 θdθ. Hence, Z 0 a π 2. Then √ a2 + x2 = a sec θ and dx = π/4 a sec2 θ dθ a3 sec3 θ 0 (a2 + x2 ) √ 1 2 π/4 = 2 sin θ]0 = 2 a 2a Z dx 3 2 = Exercise 49 √ Let 2x = sin θ with − π2 < θ < π2 . Then 1 − 4x2 = cos θ and 2dx = cos θdθ. Thus, Z Z p 1 2 1 − 4x dx = cos2 θdθ 2 Z 1 θ sin 2θ = (1 + cos 2θ)dθ = + +C 4 4 8 θ 2 sin θ cos θ = + +C 4 8 √ x 1 − 4x2 1 = sin−1 (2x) + +C 4 2 Exercise 51 √ Let x = 3 sec θ so that x2 − 9 = 3 tan θ and dx = 3 sec θ tan θdθ. Thus, Z √ 2 Z x −9 1 tan2 θ dx = dθ x3 3 sec2 θ Z 1 θ 1 = sin2 θdθ = − sin 2θ + C 3 6 12 √x2 − 9 1 −1 x = sec − +C 6 3 2x 5 Exercise 53 √ Let 5x = 3 sin θ with − π2 < θ < π2 . Then 9 − 25x2 = 3 cos θ and 5dx = 3 cos θdθ. Thus, Z 0.6 Z π/2 x2 9 √ dx = sin2 θdθ 125 0 9 − 25x2 0 9 θ sin 2θ π/2 − = 125 2 4 0 9 π 9π = [ ]= 125 4 500 Exercise 57 √ Let x = tan θ so that x2 + 1 = sec θ and dx = sec2 θdθ. Thus, Z √ 2 Z sec3 θ x +1 dx = dθ x tan θ Z tan2 θ + 1 = sec θdθ tan θ Z 1 sec θdθ = tan θ + tan θ Z Z sin θ = dθ + csc θdθ cos2 θ = sec θ + ln | csc θ − cot θ| + C √ x2 + 1 1 p = x2 + 1 + ln − +C x x Exercise 65 We have Z f (t) = t sin ωs cos2 ωsds = − 0 t 1 cos3 ωs 3ω 0 1 = 1 − cos3 ωt 3ω Exercise 66 (a) Recall that the average of f (x) in [a, b] is given by Z b 1 f (x)dx. b−a a 6 Now, one cycle takes 1 60 seconds. We are asked to find " We have Z Z 1/60 E(t)2 dt =24, 025 0 1 1 60 − 0 Z #1 1/60 2 2 E(t) dt . 0 1/60 24, 025 1 sin (120πt)dt = 60πt − sin (240πt) 120π 4 0 0 24, 025 4805 = (π) = . 120π 24 1/60 2 Thus, " RM S = 1 4805 1 24 60 − 0 #1 2 ≈ 109.60. (b) We must solve the equation 2202 = 1 1 60 − 0 Z 1/60 A2 sin2 (120πt)dt. 0 That is, 2202 = 60A2 120 which yields A ≈ 311.13 Exercise 67 Using the substitution x = sec θ, we have Z 7√ 2 Z −1 1 x −1 1 sec 7 dx = tan2 θdθ 7−1 1 x 6 sec−1 1 Z −1 1 sec 7 = (sec2 θ − 1)dθ 6 sec−1 1 1 sec−1 7 = [tan θ − θ]sec −1 1 6 i7 1 hp 2 x − 1 − sec−1 x = 6 1 1 √ −1 = ( 48 − sec 7) 6 7 Exercise 70 From Exercise 45, we find Z dx (x2 + 3 b2 ) 2 = x sin θ +C = √ + C. 2 2 b b x2 + b2 Thus, " # L−a λb x λ L−a a √ p E(P ) = = +√ 4π0 b2 x2 + b2 −a 4π0 b a2 + b2 (L − a)2 + b2 8
© Copyright 2026 Paperzz