Section 2.3 The Chain Rule #1-10: Find f[g(x)], and don`t

Section 2.3 The Chain Rule
#1-10: Find f[g(x)], and don’t simplify your
answer!!!
1) f(x) = x3; g(x) = x2 + 2x + 1
2) f(x) = x4; g(x) = 4x2 + x - 5
3) f(x) = √π‘₯;
3
g(x) = 2x – 7
4) f(x) = √π‘₯ ; g(x) = 3x – 1
5) 𝑓 (π‘₯ ) = π‘₯ 2⁄3 ; g(x) = x2 +4
6) 𝑓 (π‘₯ ) = π‘₯ 4⁄5 ; g(x) = x2 + 4
7) f(x) = ex; g(x) = x2 + 2x + 1
8) f(x) = ex; g(x) = 4x2 + x - 5
9) f(x) = ln(x); g(x) = 3x + 5
10) f(x) = ln(x); g(x) = 2x-7
#11-20: Create two functions f(x) and g(x) such that
h(x) = f[g(x)]
11) h(x) = (x-3)2
12) h(x) = (2x-5)3
13) h(x) = (π‘₯ βˆ’ 4)
14) h(x) = (π‘₯ βˆ’
1⁄
2
1⁄
2) 3
15) β„Ž(π‘₯) = √π‘₯ + 5
3
16) β„Ž(π‘₯) = √7π‘₯ + 1
17) h(x) = (x-3)2 + 4(x-3) + 1
18) h(x) = 4(x-1)2 + 6(x-1) + 4
19) h(x) = 2(x4 + x + 1)3 + 3(x4 + x + 1)2 – 3
20) h(x) = 11(x3 + 3x)3 + 3(x3 + 3x)2 – 2
#21-32: Use the Chain rule to find the derivative of
each function.
If h(x) = f[g(x)] then h’(x) = g’(x)*f’[g(x)]
21) h(x) = (2x-4)3
22) h(x) = (5x – 3)2
23) h(x) = 5(7x + 1)4
24) h(x) = 3(8x + 7)5
25) h(x) = 3(2x – 1)-4
26) h(x) = 2(5x – 6)-3
27) β„Ž(π‘₯) = (π‘₯ 2 + 6π‘₯ + 1)3
28) β„Ž(π‘₯) = (3π‘₯ 2 βˆ’ 5π‘₯ + 2)3
29) β„Ž(π‘₯ ) = √3π‘₯ βˆ’ 5
30) β„Ž(π‘₯ ) = √π‘₯ 2 + 3
3
31) β„Ž(π‘₯ ) = 4 √5π‘₯ + 1
3
32) β„Ž(π‘₯ ) = 7 √4π‘₯ + 1
#33-46: Find the derivative of each function.
33) 𝑦 = 5π‘₯ (2π‘₯ βˆ’ 4)3
34) 𝑦 = 5π‘₯ 2 (7π‘₯ + 1)3
35) 𝑔(𝑑) = (𝑑 2 + 6𝑑 βˆ’ 1)(2𝑑 + 5)2
36) 𝑔(𝑑) = (3𝑑 2 + 5𝑑 βˆ’ 1)(4𝑑 βˆ’ 1)2
37) h(y) = (3y + 1)2(6y – 3)
38) f(y) = (2y – 3)(4y + 1)2
39) 𝑦 = 3π‘₯ 2 √2π‘₯ βˆ’ 5
3
40) 𝑦 = 4π‘₯ √7π‘₯ + 1
41) 𝑦 =
42) 𝑦 =
2
(3π‘₯βˆ’4)4
5
(2π‘₯βˆ’9)3
43) 𝑓(π‘₯ ) =
44) 𝑓(π‘₯ ) =
(3π‘₯βˆ’1)2
2π‘₯βˆ’5
(4π‘₯+5)2
2π‘₯+1
45) 𝑔(π‘₯ ) =
46) 𝑔(π‘₯ ) =
π‘₯2
√2π‘₯βˆ’3
π‘₯3
√5π‘₯βˆ’7
#47-52:
a) Find all values of x where the tangent line is
horizontal
b) Find the equation of the tangent line to the
graph of the function for the values of x found in
part a.
47) f(x) = (2x-3)2
48) f(x) = (3x – 4)2
49) y =4x (x – 1)2
50) y =3x (x – 2)2
51) y = 5(x + 3)4
52) y = 7(5x – 6)2