Section 2.3 The Chain Rule #1-10: Find f[g(x)], and donβt simplify your answer!!! 1) f(x) = x3; g(x) = x2 + 2x + 1 2) f(x) = x4; g(x) = 4x2 + x - 5 3) f(x) = βπ₯; 3 g(x) = 2x β 7 4) f(x) = βπ₯ ; g(x) = 3x β 1 5) π (π₯ ) = π₯ 2β3 ; g(x) = x2 +4 6) π (π₯ ) = π₯ 4β5 ; g(x) = x2 + 4 7) f(x) = ex; g(x) = x2 + 2x + 1 8) f(x) = ex; g(x) = 4x2 + x - 5 9) f(x) = ln(x); g(x) = 3x + 5 10) f(x) = ln(x); g(x) = 2x-7 #11-20: Create two functions f(x) and g(x) such that h(x) = f[g(x)] 11) h(x) = (x-3)2 12) h(x) = (2x-5)3 13) h(x) = (π₯ β 4) 14) h(x) = (π₯ β 1β 2 1β 2) 3 15) β(π₯) = βπ₯ + 5 3 16) β(π₯) = β7π₯ + 1 17) h(x) = (x-3)2 + 4(x-3) + 1 18) h(x) = 4(x-1)2 + 6(x-1) + 4 19) h(x) = 2(x4 + x + 1)3 + 3(x4 + x + 1)2 β 3 20) h(x) = 11(x3 + 3x)3 + 3(x3 + 3x)2 β 2 #21-32: Use the Chain rule to find the derivative of each function. If h(x) = f[g(x)] then hβ(x) = gβ(x)*fβ[g(x)] 21) h(x) = (2x-4)3 22) h(x) = (5x β 3)2 23) h(x) = 5(7x + 1)4 24) h(x) = 3(8x + 7)5 25) h(x) = 3(2x β 1)-4 26) h(x) = 2(5x β 6)-3 27) β(π₯) = (π₯ 2 + 6π₯ + 1)3 28) β(π₯) = (3π₯ 2 β 5π₯ + 2)3 29) β(π₯ ) = β3π₯ β 5 30) β(π₯ ) = βπ₯ 2 + 3 3 31) β(π₯ ) = 4 β5π₯ + 1 3 32) β(π₯ ) = 7 β4π₯ + 1 #33-46: Find the derivative of each function. 33) π¦ = 5π₯ (2π₯ β 4)3 34) π¦ = 5π₯ 2 (7π₯ + 1)3 35) π(π‘) = (π‘ 2 + 6π‘ β 1)(2π‘ + 5)2 36) π(π‘) = (3π‘ 2 + 5π‘ β 1)(4π‘ β 1)2 37) h(y) = (3y + 1)2(6y β 3) 38) f(y) = (2y β 3)(4y + 1)2 39) π¦ = 3π₯ 2 β2π₯ β 5 3 40) π¦ = 4π₯ β7π₯ + 1 41) π¦ = 42) π¦ = 2 (3π₯β4)4 5 (2π₯β9)3 43) π(π₯ ) = 44) π(π₯ ) = (3π₯β1)2 2π₯β5 (4π₯+5)2 2π₯+1 45) π(π₯ ) = 46) π(π₯ ) = π₯2 β2π₯β3 π₯3 β5π₯β7 #47-52: a) Find all values of x where the tangent line is horizontal b) Find the equation of the tangent line to the graph of the function for the values of x found in part a. 47) f(x) = (2x-3)2 48) f(x) = (3x β 4)2 49) y =4x (x β 1)2 50) y =3x (x β 2)2 51) y = 5(x + 3)4 52) y = 7(5x β 6)2
© Copyright 2026 Paperzz