The Inverse Laplace Transform and Transforms of Derivatives - 4.2 1. Inverse Laplace Transform: Let Fs c£ft ¤. We say ft is the inverse Laplace transform of Fs and write ft c "1 £Fs ¤. c "1 £F¤ is also a linear operator, i.e., a. c "1 £Fs Gs ¤ c "1 £Fs ¤ c "1 £Gs ¤ b. c "1 £cFs ¤ cc "1 £Fs ¤ Example Find the inverse Laplace transform ft of Fs where a Fs 13 , s 0 s b Fs 1 , s "2 s2 c Fs 1 , s0 9s 2 2 2 s 2 " 1 , s0 d Fs s2 " 2 , s 0 e Fs s5 s 3 s 2 6s 9 s f Fs g Fs s " 1 s " 2 s 4 s " 1 s 2 4 h Fs 2s 1 s 2 1 s 2 2 a. Fs 13 1 2!3 1 c£t 2 ¤ c 2! s 2 s 1 t 2 , ft 1 t 2 2 2 b. Fs 1 c£e "2t ¤, ft e "2t s2 c. 1 1 Fs 9s 2 2 9 s2 1 c sin 3 2 1 2 9 2 t 3 9 s2 c 2 2 3 9 2 t 3 1 sin 3 2 2 3 1 2 3 s2 2 3 2 , ft 1 sin 3 2 2 t 3 3t " 1 cos 2 3 3t d. s Fs s2 " 2 2 s 3 3 s c sin ft sin 3t 3t " " 2 " 3 1 2 3 s2 3 1 c cos 2 3 1 cos 2 3 3t 2 c sin 3t e. s 2 " 1 Fs s5 2 4 2 s " 2s5 1 1s " 23 1 4!5 4! s s s c£1¤ " c£t 2 ¤ 1 c£t 4 ¤ c 1 " t 2 1 t 4 , ft 1 " t 2 1 t 4 24 24 4! f. First write Fs as a sum of partial fractions. Use TI-89/F2/expand(expression). 1 16 25 1 s 2 6s 9 " 5s " 1 6s " 2 30s 4 s " 1 s " 2 s 4 " 16 c£e t ¤ 25 c£e 2t ¤ 1 c£e "4t ¤ c " 16 e t 25 e 2t 1 e "4t 5 5 6 30 6 30 25 1 16 t 2t "4t ft " e e e 5 6 30 g. First write Fs as a sum of partial fractions. 1 1 s " 1 s2 " 4 " 1 2s 1 24 Fs 5 s 4 5 s 4 5 s 4 5s " 1 5s " 1 s " 1 s 2 4 1 c£e t ¤ " 1 c£cos2t ¤ 2 c£sin2t ¤ c 1 e t " 1 cos2t 2 sin2t 5 5 5 5 4 4 1 1 2 t ft e " cos2t sin2t 5 5 4 h. First write Fs as a sum of partial fractions. Fs 2 2s 12 2s2 1 " 2s2 1 22s 2 1 " 22s " 2 1 s 2 s 2 s 2 s 1 s 1 s 1 s 1 s 2 " 1 c sin 2 t 2c£cos t¤ c£sin t¤ " 2c cos 2 t 2 Fs 2 t " 1 sin 2 t 2 2 t " 1 sin 2 t 2 c 2 cos t sin t " 2 cos ft 2 cos t sin t " 2 cos 2. Transforms of Derivatives: U What is c f ? Observe that c f U . ;0 f u e "st , du "se "st U t e "st dt . lim ft e "st | b0 " ; "s ft e "st dt bv. U 0 dv f t dt, v ft lim fb e "sb " f0 sc£f¤ sc£f¤ " f0 bv. What is c f UU ? c f UU n snc f sc f U U U " f 0 s 2 c£f¤ " sf0 " f 0 What is c£f n ¤? c f U U " s n"1 f 0 " s n"2 f 0 ". . . " sf0 " f 0 3. Solve Initial Value Problems Using Laplace Transform: For a given initial value problem for an nth-order linear differential equation: Ly fx , y0 ) 0 , y U 0 ) 1 , . . . , y n"1 0 ) n"1 , two steps to find the solution: a. Find c£y¤, let Fs c£y¤. b. y c "1 £Fs ¤. Example Solve y UU 3y U " 4y t e "2t , y0 0, y U 0 "1 . 2 a. Take the Laplace transform of both sides of the equation: c£y UU 3y U " 4y¤ c£t e "2t ¤ c£y UU ¤ 3c£y U ¤ " 4c£y¤ c£t¤ c£e "2t ¤ s 2 c£y¤ " sy0 " y U 0 3sc£y¤ " y0 " 4c£y¤ 12 1 s2 s s 2 3s " 4 c£y¤ 1 12 1 s2 s c£y¤ 1 s 2 3s " 4 1 1 "1 s2 s2 b. Solve for y : 1 s 2 3s " 4 3 1 23 1 " " 3 " 12 16s 6s 2 80s 4 15s " 1 4s c 23 e "4t " 1 e "2t 1 e t " 1 t " 3 16 6 4 15 80 23 3 1 1 1 t "4t "2t y e " e e " t" 80 16 6 4 15 1 1 "1 s2 s2
© Copyright 2026 Paperzz