Answers to review problems: 1. p(3) = 0.3 the Sum must equal 1 2. ∑x∙p(x) = (-4)(20/30) + 0(5/30) + 5(4/30) +15(1/30) = -$1.50 VAR(X) = ∑x2p(x- (E(X))2 = (16)(20/30) + 0(5/30) + 25(4/30) + 225 (1/30) - ($1.50)2 = = 21.5 - 2.25 = 19.25 Standard deviation = $4.39 3. X= # of pet owners p= 0.25, q = 0.75, n = 18 P(x=5) = binompdf(18,.25,5) = 0.1988 P(x<10) = P(x≤9) = binomcdf(18,0.25,9) = 0.9946 P(x≥10) =1 - P(x≤9) = 1-0.9946 =0.0054 Mean = np = 18*0.25 = 4.5 VARIANCE = npq = 18*0.25*0.75 = 3.375 so the Standard deviation is 1.84 4. P(z>-2.40) =normalcdf(-2.4, big#,0,1)= 0.9918 5. P(-1<z<2.3) = normalcdf(-1, 2.3,0,1)= 0.8306 P(z<1.96) = normalcdf(small#, 1.96,0,1)= 0.975 6. P(25<x< 38) Two ways: convert to "Z" by (x-mean)/(stand. dev) P(-.833<z<1.33) normalcdf( -.83,1.33) = .7064 normalcdf(25,38,30,6,) = 0.7064 7. P(X>30) normalcdf(30, big#, 24.5,5.5) = 0.1587 8. InvNorm(0.20) = -0.84 InvNorm(0.95) = 1.645 use z = 1.645 = (x-80)/8 and solve for x or InvNorm(0.95, 80, 8) = 93.16 9. a. 3 standard deviations≈ 99.7% b. 2 standard deviations≈95% c. 1 standard deviation≈68% [From calculator normalcdf: .... 0.9973, 0.9545, 0. 68270]
© Copyright 2026 Paperzz