Math 2414 Homework Set 9 – Solutions #4. (2 pts for (a) ONLY) 10 Points ⇒ w 1 = u= , −214 , 221 w 21 ⇒ u= − vv = − 21 (a) w = (b) v =38 3 38 i+ 2 38 j− 5 38 k #8. (2 pts) x y −7 cos θ = −0.15453 = = x y 54 38 ⇒ cos −1 ( −0.15453) = 1.72595 rad θ= The two vectors are neither parallel or orthogonal. a b 1 2, −4,1 = #9. (3 pts) proja b= 2 a= 21 a 2 −4 1 , , 21 21 21 #12. (3 pts) First label the points P=(1, -2, 3), Q=(0, 5, -1) and R=(4, 0, -2) then the following two vectors are in the plane, QP = 1, −7, 4 RP = −3, −2,5 Then the cross product of these two vectors will be orthogonal to the plane containing the vectors and hence the points. i j k QP × RP = 1 −7 4 −3 −2 5 #1. ( −2, 4 ) is a point and i j 1 −7 =−35i − 12 j − 2k − 5 j + 8i − 21k =−27i − 17 j − 23k −3 −2 Not Graded −2, 4 is a vector. Here’s a sketch of the point and several possible representation of the vector. Math 2414 Homework Set 9 – Solutions #2. a = 4 + 36 = #3. a= 8b = −16, −8 40 = 2 10 10 Points 4b − 3a = −8, −4 − 6, −18 = −14,14 81 + 1= 82 8b= 16 i + 80 j − 24 k 4b − 3a = 8 i + 40 j − 12 k − ( 27i − 3 j ) =−19i + 43 j − 12k a b #5. = #6. a b = −4 ) ( 2 )( 0 ) + ( 5)( 3) + ( −6 )(= a= b cos ( 25π ) 39 = ( 2 )( 31 )( 0.30917 ) −456 pq = −1 #7. cos θ = = p q 342 608 19.16854 θ= π The two vectors are parallel. ⇒ a b 1 −1 1 7 , , #10. proja b = 2 a = −1,1, 7 = 51 51 51 51 a #11. Remember that w × v =− ( v × w ) . i j k v × w= 2 0 −4 3 1 −6 w × v =−4i − 2k i j 2 0= 0i − 12 j + 2k − ( −12 j ) − ( −4 ) i − ( 0 ) k = 4i + 2k 3 1 = a #13. First label the vectors 0, 7, −1 = ,b 1,3, −2 and c = 9, 0,3 then compute the volume of the parallelepiped that is determined by these vectors. If the volume is zero then they all lie in the same plane. 0 7 −1 0 7 a b × c = −120 ≠ 0 1 3 −2 1 3 = 9 0 3 9 0 ( ) So, the vectors do NOT all lie in the same plane.
© Copyright 2026 Paperzz