1. Simplify each. a ) 5− 3 4 − 62 = 5− 3(−32) = 5+ 96 = 101 ( ) b) 49 + 74 = 123 c) −5− 6 + 4 (−2) = −5− 6 − 8 = −19 = 19 d ) − 32 + 33 + 3−2 = −9 + 27 + 1 = 18 1 9 9 2. Evaluate each if w = 4, x = 2, y = −3, and z = 2 . 3 2 a ) w 2 + y 2 = 42 + (−3) = 16 + 9 = 25 = 5 b) xy z 2(−3) = = −6 ÷ 2 = −6 ⋅ 3 = −9 3 2 3 2 c) w − yz = 4 − (−3) 2 = 4 + 2 = 6 = 6 3 d ) y + xz −1 = −3+ 2 ( 23 ) = −3+ 3 = 0 ! 2$ e ) w 3− 2x − y 2 = 4 # 3− 2 ( 2) − (−3) & = 4 (3− 4 − 9) = 4 (−10) = −40 " % ( ) 3. Use the rules of exponents to simplify each. Leave no negative exponents. 10 6 a ) 5x 6 y 3 z −5 −2x 4 y 3 z 4 = −10x10 y 6 z −1 = −10x ( b) 7x −2 y8 ( c) −6x4 7 2 y 9x y −3 ) 3 ) y z = 343x −6 y 24 = 343y6 24 x = −2x 3 5 y 3 d ) 25x8 y16 ( 12 ) = 25x8 y16 = 5x 4 y8 4. Simplify each. a ) 3x 2 − 5x +11 + 5x 2 + 6x − 23 = 8x 2 + x −13 ( b) (−x 2 )( − 7x + 8) − (3x 2 ) 2 − 6x + 3 = −4x 2 − x + 5 ) 2 c) (3x − 8) = (3x ) − 2 (3x ) (8) + 82 = 9x 2 − 48x + 64 d ) (5x −1) (7x + 4) = 35x 2 + 20x − 7x − 4 = 35x 2 +13x − 4 2 e ) (8x − 5) (8x + 5) = (8x ) − 52 = 64x 2 − 25 f ) ( 2x + 3) x 2 − 4x + 5 = 2x 3 + 3x 2 − 8x 2 −12x +10x +15 = 2x 3 − 5x 2 − 2x +15 ( ) g ) − 5x 3 9x 2 +10x = −45x5 − 50x 4 ( ) h ) 3 250 + 7 40 = 3 25⋅10 + 7 4 ⋅10 = 15 10 +14 10 = 29 10 i ) 6 3 ⋅ 7 12 = 42 48 = 42 16 ⋅ 3 = 168 3 j ) 12 ( ) 6 +2 8 = 2 3 ( ) 6 + 4 2 = 2 18 + 8 6 = 6 3 + 8 6 2 ( ) = 49 −14 13 +13 = 62 −14 13 l ) ( 17 − 4) ( 17 + 4) = 17 −16 = 1 m) (3 5 + 4 2 ) ( 5 − 3 2 ) = 3⋅ 5− 9 10 + 4 10 −12 ⋅ 2 = 15− 5 10 − 24 = −9 − 5 10 k ) 7 − 13 6 ⋅ 3 3 3 n) 72 50 o) =6 3 3 36 25 = =6 5 3 ⋅ 3+ 5 3− 5 3+ 5 p) =2 3 5 = 15 3+5 15 9−5 = 15 3+5 15 4 q) (7 − 3i ) + ( 4 − 9i ) = 11−12i r ) (11+ 2i ) − (7 + 5i ) = 4 − 3i s) ( 4 + 9i ) ( 4 − 9i ) = 16 + 81 = 97 2 t ) ( 4 − 9i ) = 16 − 72i + 81i 2 = −65− 72i u ) (5− 2i ) (6 + i ) = 30 + 5i −12i − 2i 2 = 30 − 7i + 2 = 32 − 7i 2 v ) (5+ 2i ) = 25+ 20i + 4i 2 = 21+ 20i w) 3i ( 28 −13i ) − i (5i ) +12i = 84i − 39i 2 − 5i 2 +12i = 44 + 96i x) y) z) 3 ⋅ x−4 + 7 ⋅ x+7 x+7 x−4 x−4 x+7 5x+3 ( x+5)( x−5) − = 5 ⋅ x−5 x−5 x−5 3x − x+5 + 4 2x−1 2x−1 2x−1 3x−12 + 7x+49 x+7 ( )( x−4) ( x+7)( x−4) = 5x+3 − 5x−25 cc) x +3 2 2x− 3 x ⋅ 2x = 2x x 2 +6x 4x 2 −6 10x+37 x+7 ( )( x−4) = 28 ( x+5)( x−5) ( x+5)( x−5) ( x+5)( x−5) 3x−( x+5)+4 2x−1 = = =1 2x−1 2x−1 ( x−3)( x+2) ⋅ 6x 2 = 2x 5 3x( x+2) 5( x−3) (3x−4)(3x+4) ⋅ (2x+1)( x+3) = (3x−4)(2x+1) bb) (3x+4)( x+1) ( x+3)( x−1) ( x+1)( x−1) aa ) = 5. Write an equation for each line. a) y = − 4 x − 23 b) m = 3 7−4 5−(−1) = 3 = 1 ; y − 7 = 1 ( x − 5) ; y − 4 = 1 ( x +1) . 6 2 2 c) x = 9 e) m = 2 d) y = 4 7 −A B = −5 = 5 ; −3 3 b = −π ; y = 5 x − π . 3 f ) slope of the perpendicular line is m = 4; y + 3 = 4 ( x − 3) . 2 6. Given the quadratic function f ( x ) = −2 ( x + 7) + 90, find each. 2 2 e) − 2 ( x + 7) + 90 = 0 a) f (−7) = −2 (−7 + 7) + 90 = −2 (0) + 90 = 90; 2 2 − 2 ( x + 7) = −90 b) f (0) = −2 (0 + 7) + 90 = −2 ( 49) + 90 = −8; c) The vertex is ( h, k ) ⇒ (−7, 90) ; ( x + 7) d ) The axis of symmetry is x = h ⇒ x = −7; 2 = 45 x + 7 = 45 f ) f (0) = −8 so the y-intercept is − 8; x + 7 = ±3 5 g) The domain is (−∞, ∞) ; x = −7 ± 3 5 h) The range is (−∞, 90#$. 7. Given the points (7, − 8) and (−3, 6) , find each. a) m = b) d = −8−6 7−(−3) = −14 = − 7 ; 10 5 2 (7 − (−3)) + (−8 − 6) " 7+(−3) −8+6 % c) M = $ , = 2 '& # 2 2 2 = 102 + (−14) = 100 +196 = 296 = 4 ⋅ 74 = 2 74; ( 42 , −22 ) = (2, −1). 8. Solve each equation. a) 6x + 8 = 32 6x = 24 x=4 b) − 5 = 3 ( x −1) c) − 4 ( x − 3) = 6 ( x + 5) d ) 12 = 5+x − 40 = 3( x −1) − 4x +12 = 6x + 30 −10x +12 = 30 −10x = 18 12 ( x − 3) = 8 (5+ x ) 8 − 40 = 3x − 3 − 37 = 3x x = −37 3 x =−9 5 8 x−3 12x − 36 = 40 + 8x 4x − 36 = 40 4x = 76 x = 19
© Copyright 2026 Paperzz